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ABSTRACT 

 

Continued outbreaks of foodborne illness involving dairy products in the United States 

stress the importance for rapid methods of detection of pathogenic microorganisms in food 

processing environments. Pathogenic microorganisms, such as Salmonella are widespread, and 

can be found in a variety of foods, ingredients and in industrial environments. The presence of 

pathogens in dairy products constitutes great risk for increased exposure, illness and reduces 

overall quality of the foodstream. As a result, emphasis has been placed on adapting or developing 

sensitive techniques to rapidly detect notable pathogens, such as Salmonella, Listeria 

monocytogenes and Escherichia coli O157:H7 in both contaminated foods and industrial 

environments. Common assays employed in the detection of pathogenic microorganisms, though 

effective in identification, are time consuming and may require several days for processing. The 

necessity to quickly screen food products and industrial environments has led to an emphasis to 

develop rapid, sensitive, automated techniques in food processing operations. Numerous methods 

of identification and detection have been implemented in food processing environments.  

An optimal approach to the rapid detection of microbial pathogens would incorporate 

several advantages including: 1) improved time-to-result, 2) low-cost, 3) ease of operation and 4) 

simple interpretation. Such an approach may enable simple and cost-effective sampling of 

pathogenic microorganisms, which can be used to improve industrial efficiency. As a possible 

alternative to existing detection efforts, low-cost diagnostic (LCD) tools, particularly paper-based 

analytical devices (PADs), may be employed for rapid, sensitive and selective detection. PADs are 

frequently combined with colorimetric detection, in which chromogenic substrates are used to 

yield a visual representation of detection. Different enzyme-substrate pairs may be employed to 
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accomplish various goals—from simple “presence/absence” to species-specificity. While 

“presence/absence” is limited, the use of shared enzymes is advantageous during detection and 

identification of metabolic state. Depending upon environmental factors, bacteria may exist in 

active or dormant states; reversion of a pathogen from dormancy to a metabolically active state 

may result in rapid growth and instances of illness.  

As the level of enzymatic expression varies between metabolic states, oxidoreductases and 

alkaline phosphatases (ALP) were investigated as vehicles for colorimetric detection. 

Oxidoreductases are present in greater amounts in metabolically active bacteria, and are capable 

of reducing 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) to 

formazans. Nitrophenyl phosphate (PNPP) is present in dormant bacteria, and cleaves phosphate 

groups from para-nitrophenyl-phosphate salts, resulting in para-nitrophenol. Combined use of 

enzymatic substrates, including INT and 5-methylphenazin-5-ium methyl sulfate (PMS) for 

metabolically active bacteria, and INT and PNPP for dormant bacteria, yielded an improved 

colorimetric readout visible by eye within 30 min. With detection achieved within 30 min, the two 

assays, INT-PMS and INT-PNPP, decrease time-to-result, are portable and may be amenable to 

on-site detection in agricultural, environmental and industrial settings. 

While the use of non-specific bacterial enzymes may limit some applications, 

immobilization of bacteria-specific bacteriophage (P22, T4) onto paper can provide an additional 

layer of specificity. Bacteriophage are robust, and may be easily absorbed onto paper. In this work, 

immobilized bacteriophage facilitated specific capture of Salmonella Typhimurium on paper, 

followed by detection of metabolic state with either the INT-PMS or INT-PNPP assay. This 

combined approach can be applied to the analysis of mixed cultures, given the generally genera-

specific nature of the selected bacteriophages. Moreover, the use of chromogenic substrates 
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simplifies assay design, as color change is easily interpreted by the eye or with basic 

instrumentation. However, despite these advantages, the requirement for a 48-hour absorption 

period represents a drawback, lengthening time-to-result.  

An alternative to the use of bacteriophage for cell capture are magnetic ionic liquids 

(MILs). MILs are magnetoactive “molten salt” solvents, containing a paramagnetic component 

integrated into the cation or anion moiety of the salt. MILs are considered “green” solvents, and 

are nonvolatile, nonflammable, with tunable physicochemical properties. Due to their hydrophobic 

and liquid nature, MILs can be quickly be distributed with agitation (stirring or vortexing) 

throughout aqueous food samples as liquid micro- or nanodispersions. After encountering and 

binding bacterial cells, cell-MIL complexes can then be collected magnetically or after density-

driven sedimentation for further processing. MIL-based capture of bacteria has been previously 

combined with real-time polymerase chain reaction (qPCR) for the rapid detection of E. coli. 

While use of qPCR obviates the need for time-consuming steps such as gel electrophoresis, its 

inherent complexity and cost may prohibit its use in point-of-care or resource-limited settings. 

Isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification 

(RPA), may have considerable advantages as alternatives to PCR. RPA results in exponential 

amplification of nucleic acids and operates at a constant, near-physiological temperature (~40°C), 

eliminating the need for a thermocycler, generating target-specific amplicons in less than 20 min. 

The combined use of MIL-based extraction and rapid, streamlined pathogen detection 

using RPA was investigated. The ability of MIL solvents to quickly extract Salmonella 

Typhimurium was first examined by dispersing MIL into an aqueous suspension, followed by 

rapid (~30 s) physical enrichment (concentration) and extraction using an applied magnetic field. 

Following extraction, viable bacteria were desorbed from the MIL extraction phase with exposure 
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to a nutrient-rich broth (Luria Bertani medium), referred here to as a “back-extraction” step. In 

efforts to improve back-extraction, recovery of the model Gram-negative bacterium Serratia 

marcescens from the MIL extraction phase was investigated using several back-extraction media 

varying in ionic strength and nutrient composition. The highest recovery of cells was obtained 

using a nutrient-rich tryptone medium supplemented with NaCl. This modification of the 

extraction protocol enabled improvement in MIL-based bacterial concentration, enriching cells by 

a factor of 5 - 6X within 3–5 min. 

The improved MIL assay was then examined in conjunction with RPA for rapid detection 

of Salmonella Typhimurium. MIL-based sample preparation was compared with use of a 

commercial sample preparation solution, PrepMan® Ultra Sample Preparation Reagent (PMU), 

for detection of Salmonella Typhimurium in artificially-contaminated pasteurized foods. PMU is 

commonly coupled with PCR to eliminate or inactivate PCR inhibitors and uses both heating and 

centrifugation steps. As an established method for sample preparation, use of PMU served as a 

benchmark method against which our MIL-based process was compared. In aqueous suspensions 

of Salmonella Typhimurium, detection was achieved as low as 103 CFU mL-1 using the combined 

MIL-RPA approach, which is equivalent to the previously investigated MIL-qPCR method, and, 

in our hands, outperformed the PMU method by an order of magnitude. Visualization of amplified 

products was achieved using gel electrophoresis or lateral flow readouts. Nucleic acid lateral flow 

immunoassays (NALFIA) require less than 5 min for amplicon visualization, are portable, require 

minimal technical expertise during interpretation and are easy to implement outside of laboratory 

settings. The need for electric-based heating elements for RPA incubation was eliminated through 

the use of low-cost, portable, supersaturated sodium acetate heat packs. This repurposing of 
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consumer-grade hand warmers for nucleic acid amplification is a novel approach and easily 

incorporated into the MIL-RPA scheme.   

While MILs have been successfully used for capture and concentration of bacteria from 

foods prior to culture- or nucleic acid-based detection, little is known about their interactions with 

bacteria—including modes of physical association or potential antimicrobial activities. Further 

understanding these interactions may facilitate optimization of MIL-based capture in challenging 

food matrices, as well as modification of downstream procedures to mitigate the impacts of 

potential bacterial injury during extraction and concentration. To begin this work, a series of multi-

strain panels, including seven representative Salmonella DNA subgroups and eight strains of E. 

coli O157:H7, were exposed to the Ni(II) MIL and plated in parallel on non-selective and selective 

media. Calculated enrichment factors (EF) were similar between media types, while individual cell 

counts were nearly identical, suggesting that the Ni(II) MIL, as applied during our capture and 

concentration assay, does not cause assay-limiting cellular injury in these two pathogens. Observed 

variability between EF values may result from differences in the extraction efficiency of the MIL, 

with some strains exhibiting weaker affinity for the MIL compared to other strains tested, which 

is an area of ongoing research. Importantly, our results demonstrate capture and recovery of strains 

representative of all seven Salmonella DNA subgroups and all eight strains of E. coli O157:H7 

tested, with comparable recovery on non-selective and selective media. This initial and ongoing 

research on characterization of MIL-bacterial interactions establishes the foundation for further 

evaluation of new MIL structures for improving the preconcentration and recovery of viable 

microorganisms from complex food matrices. 
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CHAPTER 1 

A SURVEY OF RAPID METHODS OF DETECTION OF FOODBORNE PATHOGENS 
IN DAIRY PRODUCTS AND PROCESSING ENVIRONMENTS 

 
 

1.1 Introduction 

Salmonella is a ubiquitous, Gram-negative genus of bacteria that is widespread in the 

environment, and can be found in many different foods, food ingredients and within industrial food 

processing environments (El-Gazzar & Marth, 1992). Infection frequently results from ingestion 

of tainted food products, or the fecal-oral route. Illness is often observed in children under the age 

of five, and adults over age 60—commonly referred to as “at risk populations.” Foodborne illness 

typically results from the consumption of contaminated poultry, eggs and dairy products. Foods 

prepared on dirty surfaces, in industrial environments and restaurants, are vectors for illness 

(Murray, Rosenthal, & Pfaller, 2009). According to the Centers for Disease Control and Prevention 

(CDC) Salmonella is estimated to cause 1.2 million cases of illness in the United States. Of that, 

nearly 19,000 individuals are hospitalized, and 380 cases of death are reported annually (Centers 

for Disease Control and Prevention [CDC], 2019). Although mortality from infection is low, 

morbidity is high, as Salmonella is amongst the top five foodborne pathogens responsible for 

domestically acquired foodborne illness, and first for number of cases resulting in either 

hospitalizations or death (CDC, 2018). 

The most common form of salmonellosis in the US is gastroenteritis (Murray et al., 2009). 

Onset of symptoms can occur 12 to 72 hours following infection, and include diarrhea, nausea, 

vomiting, fever and abdominal cramps (CDC, 2019; Murray et al., 2009). Symptoms are 

frequently self-limiting, and can last as little as two days, or as long as one week (Murray et al., 

2009). According to the CDC, within the last five years several outbreaks of salmonellosis were 
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reported. Among the food items recalled due to contamination were fresh produce, such as 

cucumbers and bean sprouts, poultry products and raw-cashew cheese (CDC, 2019). On average, 

between 20 and 30 percent of those affected were hospitalized, with no reported deaths. Similar 

food products are often involved in outbreaks nearly every year; common foodstuffs include alfalfa 

sprouts, nut products (cashews, pistachios, peanuts) and poultry. The CDC advises that, fresh 

produce—such as bean or alfalfa sprouts—is a known source of foodborne illness and should be 

handled in compliance with common food safety practices (CDC, 2019). 

Although outbreaks of foodborne illness involving dairy products seldom occur, when they 

do, they can be quite detrimental, causing severe illness and affecting many (Modi, Hirvi, Hill & 

Griffiths, 2001). Wood, Collins-Thompson, Irvine and Myhr (1984) describe one such case in 

which the shedding of 200 CFU/mL of Salmonella Muenster directly into the milk by one dairy 

cow lead to an outbreak of salmonellosis in Ontario, Canada. In 1985, more than 180,000 

individuals in the Midwest were afflicted with salmonellosis (El-Gazzar & Marth, 1992). The 

outbreak was traced to samples of 2% milk, contaminated following pasteurization (El-Gazzar & 

Marth, 1992). Transmission of Salmonella from an animal reservoir can cause substantial 

outbreaks of illness—most commonly when unpasteurized, or raw, milk is consumed (Wood et 

al., 1984). Despite the risk, proponents of raw milk continue to campaign for its legalization in 

states that prohibit intrastate sale, as the demand for raw milk is on the rise (Mungai, Behravesh, 

& Gould, 2015). Regulations regarding the sale of raw milk differ state-by-state, and include 

complete bans (as in Iowa), to limited farm sales (Mungai et al., 2015). The risks associated with 

consumption of raw milk are high and can result in hospitalization from a wide variety of 

microorganisms, such as Brucella, Campylobacter, Listeria and Salmonella, to name a few (CDC, 

2016a). In fact, between 2007 and 2012, 81 reported outbreaks were attributed to raw milk, across 
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26 states. These outbreaks resulted in 979 illnesses and 73 hospitalizations, with most illnesses 

attributed to Campylobacter, Shiga toxin-producing E. coli and Salmonella (Mungai et al., 2015). 

On average, the number of outbreaks involving raw milk during this period was four times higher 

than the number of outbreaks that occurred between 1993 and 2006 (Mungai et al., 2015). This is 

due to increased consumption of raw milk, as well as a decrease in the number of states that 

prohibit its sale. Nonetheless, proponents of raw milk believe that the consequences are 

outweighed by the benefits—many of which have not been scientifically validated (Denny, Bhat, 

& Eckmann, 2005). 

Fortunately, due to proper pasteurization techniques, outbreaks involving dairy products 

other than milk are less common. However, in some cases of salmonellosis, contamination can be 

attributed to improper pasteurization of milk or contamination during the post-pasteurization dairy 

production process, including milk used to produce cheese (El-Gazzar & Marth, 1992; Modi et al., 

2001; Wood et al., 1984). Despite such cases, Salmonella species are not generally heat resistant—

species commonly grow between 35 and 37 °C—and would not easily survive pasteurization 

(Modi et al., 2001). Such examples indicate the ability Salmonella has to survive the cheese 

manufacturing process, particularly if raw milk is used during production (Wood et al., 1984). 

That said, an organism more commonly attributed to outbreaks involving cheese and dairy 

products is Listeria monocytogenes, a ubiquitous Gram-positive rod-shaped bacterium that is 

widespread within the environment, from soils to water to feces (Ryser & Donnelly, 2001). 

Contamination of produce and other foods is attributed to its presence in soils, which serves as a 

reservoir for contamination during processing (Kozak, Balmer, Byrne, & Fisher, 1996; Ryser & 

Donnelly, 2001). However, it should be noted that cattle can shed L. monocytogenes if infected 

with the organism, which can result in either mastitis or encephalitis (Kozak et al., 1996). Shedding 
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can continue undetected long after the cow has returned to health (Kozak et al., 1996; Marth, 

1994). Naturally, this is disconcerting, as seemingly healthy cattle can contaminate raw milk; in 

fact, L. monocytogenes is commonly present in two to four percent of the raw milk supply (Kozak 

et al., 1996; Ryser & Donnelly, 2001).  

Aside from the aforementioned problems associated with raw milk, L. monocytogenes is 

notably associated with cheese, as it is able to grow at refrigeration temperatures while maintaining 

survivability during the processing and storage of most cheeses (Ryser & Donnelly, 2001). While 

L. monocytogenes is well-known for its association with soft cheeses made with raw milk, 

outbreaks have been associated with pasteurized cheeses, contaminated during processing (CDC, 

2016b). In 2016, a variety of cheeses—including cotija, queso fresco, feta and mozzarella—were 

associated with a multistate outbreak of L. monocytogenes, which resulted in 30 illnesses, 28 

hospitalizations and three deaths (CDC, 2015a). The disease resulting from infection by L. 

monocytogenes is referred to as listeriosis and can take as long as one or two months to develop, 

which makes outbreaks involving this organism difficult to trace back to a particular product 

(Ryser & Donnelly, 2001). Although morbidity is low, with an estimated 1600 infections per year, 

mortality is high, with 16 percent of incidences resulting in death (CDC, 2016b). High-risk groups, 

such as the immunocompromised, pregnant women and newborns, are most at-risk for infection 

and death, while pregnant women can pass the infection to unborn infants, which can result in 

miscarriages and stillbirths (CDC, 2016b; Ryser & Donnelly, 2001).  

Another case worth discussing is the highly publicized multistate outbreak linked to Blue 

Bell Creameries, manufacturers of ice cream, sherbet and other frozen dairy treats. Despite only 

10 cases, the outbreak was notable as each case resulted in hospitalization, and—of those—three 

deaths. Onset of illness spanned from January 2010 to January 2015 (CDC, 2015b). Following 
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subsequent investigation, Blue Bell Creameries voluntarily recalled products implicated in the 

outbreak, and suspended production at its production facility in Broken Arrow, OK, where 

multiple contaminated products were manufactured (CDC, 2015b; Food and Drug Administration 

[FDA], 2016). However, the recall was expanded to include all products available for retail sale 

when L. monocytogenes was detected in additional products manufactured elsewhere (FDA, 2016). 

Investigations ongoing, the company explained that extensive cleaning, sanitizing and training 

program would be introduced across all manufacturing facilities (FDA, 2016). 

An additional bacterium of interest to the dairy foodstream is Escherichia coli, specifically 

E. coli O157:H7. E. coli is a Gram-negative rod-shaped bacterium that exists as part of the normal 

flora of the intestinal tract in humans and some animals (Meng, Feng, & Doyle, 2001). 

Classification is based on both serotyping and virotyping, where serological classification is 

achieved via differences amongst the O and H antigens (Meng et al., 2001). The former 

corresponds to the O antigen of the lipopolysaccharide (LPS) core, LPS being the chief component 

of the outer membrane in Gram-negative bacteria, while the latter refers to the flagella (Meng et 

al., 2001). Virotyping refers to various virulence factors, such as attachment to intestinal 

epithelium cells, invasion, toxin production and so forth—pathogenicity is arbitrated by these 

virulence factors, as well as the ability of the organism to multiply within the host (Meng et al., 

2001). That said, most E. coli do not cause illness, and are considered non-pathogenic; however, 

six virotypes of pathogenic E. coli exist, including: enterohemorrhagic E. coli (EHEC), 

enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli 

(ETEC), enteroinvasive E. coli (EIEC) and diffusely adherent E. coli (DAEC), and are known to 

cause severe diarrheagenic illness in humans (Farrokh et al., 2012; Meng et al., 2001). Classified 

as a Shiga toxin-producing E. coli (STEC) serotype, E. coli O157:H7 is a member of the 
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enterohemorrhagic E. coli (EHEC) sub-group and is highly virulent—doses as low as five cells 

have the potential to cause illness in human hosts (Farrokh et al., 2013). Because of this, coupled 

with its frequent association with ruminant animals (notably cattle), E. coli O157:H7 has been 

linked to outbreaks involving dairy products in the past, and is considered of concern to the dairy 

industry (Farrokh et al., 2013).  

In 2005, four cases of reported illness associated with E. coli O157:H7 infection were 

linked to consumption of raw milk obtained from a local dairy (CDC, 2007; Denny et al., 2005). 

The dairy participated in a cow-share agreement, allowing invested shareholders to obtain raw 

milk from the farm. Although cow-sharing programs are legal in certain states, a license and proper 

documentation must be obtained prior to distribution—the farm linked to the reported cases was 

unlicensed yet distributed raw milk to participating shareholders regardless (CDC, 2007; Denny 

et al., 2005). This resulted in a retrospective cohort study, in which 43 of the 45 families involved 

in the cow-sharing program were interviewed, while information was collected from 157 

individuals (CDC, 2007; Denny et al., 2005). Amongst those interviewed, 18 cases of E. coli 

O157:H7 infection were identified, with nearly half confirmed by diagnostic laboratory testing 

(CDC, 2007; Denny et al., 2005). Inspection reports identified accumulation of mud and manure 

outside and within the milking parlor itself—locations that were frequently in contact with buckets 

used for milk collection (CDC, 2007). Moreover, reports identified insufficient hand-washing 

stations, inappropriate cleaning and sanitation of equipment and poor handling of fresh milk were 

commonplace within the dairy, any of which could facilitate contamination of the raw milk product 

(CDC, 2007). 

It is worth noting that, STECs are widespread amongst dairy cattle, with some researchers 

noting worldwide prevalence rates for E. coli O157:H7 as high as 48.8%, based on fecal testing 
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(Hussein & Sakuma, 2005; Lim, Yoon & Hovde, 2010). Contamination of raw milk with STEC is 

attributed to fecal shedding, however, some authors note that an additional source of contamination 

is possibly intra-mammary, such as mastitis resulting from STEC infection (Farrokh et al., 2013). 

Several authors remain in dispute over this, with most arguing that feces remains the most likely 

source of contamination. As STECs, quite possibly E. coli O157:H7, are commensals within the 

intestines of dairy cattle, it is possible that fecal shedding results in soiling of the teats, which in 

turn can facilitate contamination of raw milk during milking (Farrokh et al., 2013). Unlike L. 

monocytogenes, E. coli O157:H7 is not as prevalent in raw milk—about zero to two percent 

between 2003 and 2013 (Farrokh et al., 2013). However, it is important to note that outbreaks 

associated with E. coli O157:H7 can affect dairy products, including cheese. E. coli O157:H7 

maintains survivability during cheese production, with low levels of viable cells present following 

lengthy storage (six weeks)—to recapitulate, E. coli O157:H7 infection requires doses as low as 

five cells (Farrokh et al., 2013; Maher, Jordan, Upton, & Coffey, 2001).  

In 2010, Bravo Farms recalled all its cheese products, including Gouda, pepper jack and 

cheddar, following FDA investigation into a multistate outbreak of E. coli O157:H7 infection that 

affected 38 individuals—15 of whom were hospitalized (CDC, 2010). No deaths were associated 

with the incident, however, one case of hemolytic uremic syndrome (HUS) was reported (CDC, 

2010). Common symptoms of E. coli O157:H7 infection include hemorrhagic colitis, with 10 

percent of cases possibly resulting in HUS (Farrokh et al., 2013; Meng et al., 2001). The 

consequence of HUS is renal failure, and it is more common in children under five years of age 

(CDC, 2010; Farrokh et al., 2013; Hussein & Sakuma, 2005). Because STECs are omnipresent 

amongst cattle, it is important that preventative measures, such as heard management (probiotic 

use, vaccinations, feed and lifestyle changes) and cross-contamination prevention, are in place to 



www.manaraa.com

8 
 

ensure that reasonable levels are present on site (Farrokh et al., 2013). It is important to note that, 

as outlined within the Pasteurized Milk Ordinance, Grade “A” raw milk and milk products for 

pasteurization, ultra-pasteurization, aseptic processing or retort processing following packaging, 

cannot surpass bacterial limits of 100,000 CFU per mL for any single producer (FDA, 2015). While 

for Grade “A” pasteurized milk and milk products, bacterial limits must be no more than 20,000 

CFU per mL (FDA, 2015). However, despite such preventative control measures, contamination 

can occur, resulting in adulterated products.  

As a result, these examples of prevalence, contamination and outbreaks attributed to 

Salmonella, L. monocytogenes and E. coli O157:H7, emphasize the need for inexpensive, rapid 

and sensitive methods of detection in both dairy products and processing environments (Goodridge 

& Griffiths, 2002). Use of low-cost techniques is crucial and can be used to improve industrial 

efficiency and in underdeveloped countries where foodborne illness is a common problem. Though 

previous reviews emphasizing the relationship between Salmonella, L. monocytogenes, E. coli 

O157:H7 and dairy products have been conducted in the past (El-Gazzar & Marth, 1992; Farrokh 

et al., 2013; Marth, 1969), this review will evaluate current, established and developing research 

in this field, in order to provide food processing technicians, public health officials, food 

microbiologists, academicians and the general public with information focused on the detection of 

these microorganisms and the growing concern of dairy-related foodborne illness. Specifically, 

this review will assess methods of rapid detection of Salmonella and other notable foodborne 

pathogens in dairy products and food processing environments. These methods have the advantage 

of requiring less time for preparation, sampling and processing, while maintaining low cost, ease 

of operation and simple interpretation of results (Vasavada, 1993). The limitations of established 

detection techniques are discussed throughout this review. Emphasis is given to developing 
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methods of rapid detection and how such methods can be adapted for use in the field. Detection 

methods that are rapid, inexpensive and user-friendly (ease of operation, simple interpretation) are 

desirable.  

There is an increasing need for sensitive and rapid detection methods of foodborne 

pathogens. The aforementioned outbreaks of foodborne illness involving contaminated dairy 

products represent a small sample of cases. Within the last 20 years, the incidence of outbreaks of 

foodborne illness has increased (Oliver, Jayarao, & Almeida, 2005; Omiccioli, Amagliani, Brandi, 

& Magnani, 2009). The prevention of illness and death as a result of foodborne pathogens is a 

major concern for most public health officials (Oliver et al., 2005). As Omiccioli et al. (2009) 

note, between 1998 and 2005, the CDC identified 45 outbreaks of foodborne illness attributed to 

raw, unpasteurized milk or cheese produced from unpasteurized milk. Nearly 1,007 cases of illness 

were reported; of these cases, 104 individuals were hospitalized, and two deaths occurred 

(Omiccioli et al., 2009). Safety of food products is a global concern and the identification of 

sensitive and rapid detection techniques of foodborne pathogens in both dairy products and 

production facilities is critical, as it will ensure the safety and quality of the dairy foodstream and 

enable public health officials to adopt suitable precautionary measures of preventing the spread of 

illness should an outbreak occur (Bhagwat, 2003; Oliver et al., 2005; Omiccioli et al., 2009).  

1.2 Detection of Foodborne Pathogens Using Paper-Based Analytical Devices 

Due to the continued presence of notable foodborne pathogens in a variety of food products 

and processing environments, the need to rapidly detect these organisms—while maintaining low 

cost—is on the rise. Standard culture methods, often considered the “gold standard” of detection 

and enumeration, require several days before a confirmed result can be identified (Jokerst et al., 

2012). The length of time is often dependent upon pre-enrichment, enrichment and selective 
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plating. The lengthy timeline is problematic as the product may already be in consumer hands 

before a definitive result is obtained (Jokerst et al., 2012). As a possible solution to this problem, 

researchers have looked towards low-cost diagnostic (LCD) tools as methods of rapid, sensitive 

and selective detection. One example includes paper-based analytical devices (PADs). Although 

there are several ways to produce PADs, wax printing is both the quickest and easiest method 

currently employed (Jokerst et al., 2012). Wax printed paper maintains many advantages, 

including cost, which is estimated as $0.001 per cm2 for a single 8.5 X 11-inch sheet of Whatman® 

#1 filter paper. As many as 275 devices can be printed on a single sheet, resulting in an approximate 

cost of $0.002 per device—much less expensive than the cost of detection, enumeration and 

identification methods currently employed in industry (Jokerst et al., 2012).  

Paper-based analytical devices are commonly combined with a colorimetric read-out to 

achieve a visual representation of detection. In this case, an enzyme will react with a chromogenic 

substrate, consequently producing a way to visually identify bacterial presence (Jokerst et al., 

2012). A variety of chromogenic substrates can be used for such assays, and range in selectivity. 

For example, for the detection of E. coli, β-galactosidase interacts with chlorophenol red β-

galactopyranoside (CPRG) to produce a red-violet colorimetric product once CPRG is hydrolyzed. 

In the detection of L. monocytogenes, phosphatidylinositol-specific phospholipase C (PI-PLC) 

interacts with 5-bromo-4-chloro-3-indolyl-myo-inositol phosphate (X-InP) to produce a blue 

product, while in the detection of Salmonella, esterase interacts with 5-bromo-6-chloro-3-indolyl 

caprylate (magenta caprylate) to produce a purple product (Jokerst et al., 2012). PI-PLC maintains 

a high degree of specificity with L. monocytogenes, as it is important in the expression of virulence 

in pathogenic strains of Listeria, allowing the organism to escape host cell vacuoles (Jokerst et al., 

2012; Notermans, Dufrenne, Leimeister-Wachter, Domann, & Chakraborty, 1991; Wei, Schreiber, 
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& Baer, 2005). However, E. coli O157:H7 is not the only E. coli serovar to produce β-

galactosidase, which can result in non-specificity of the assay (Jokerst et al., 2012). β-galactosidase 

acts as an important facilitator in the hydrolysis of β-galactosides into simple sugars and is 

common amongst multiple serovars of E. coli. As a result, further study is required for the detection 

and identification of additional serovars (Jokerst et al., 2012).  

Fortunately, Jokerst et al. note that—for the purposes of their study— the enzyme-substrate 

pairs maintained specificity for each organism under investigation, and a colorimetric product was 

only produced when the correct pair of enzyme and substrate was present (Jokerst et al., 2012). 

This is advantageous, as both detection and identification can be achieved in as little as eight to 12 

hours, with a limit of detection (LOD) of 101 CFU/cm2—keep in mind that such an assay is 

inexpensive, especially when compared to methods of detection discussed later in this review. 

Furthermore, it is important to note that detection on solid substrates, such as paper has additional 

advantages, aside from cost. Firstly, PADs are portable, and can be used in the field. Secondly, 

unlike detection in solution, detection on paper facilitates localization of the chromogenic 

substrate, allowing for simple identification and interpretation of results. Because of this, paper is 

of renewed interest as a vehicle for detection, as it is easily modified for use in a variety of low-

cost methods of detection (Yetisen, Akram, & Lowe, 2013). Finally, due to their simple design, 

and wide range of uses, PADs can be coupled with imaging using smart phones to monitor the 

color change as a function of time, as opposed to a single measurement at the end of the reaction 

(Adkins et al., 2017). The use of a light box prevents interference from background or 

environmental lighting conditions and can help to ensure standardization.  

Specific enzymes, such as those previously discussed are important when particular 

bacterial species are of interest. However, if simple presence or absence is required, as in 
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environmental testing of lake waters, the use of shared, related enzymes can be of use during 

detection. It is important to note that bacteria are capable of existing in active or dormant states, 

depending on a variety of environmental factors, including nutrient availability and growth 

conditions (temperature, microbial competition). However, should conditions improve, bacteria 

are able to revert to a metabolically active state. Their sometimes rapid growth can lead to bacterial 

blooms, which have been attributed to both environmental and manufacturing problems—

including death of wildlife and complications during industrial fermentation (Hallegraeff, 1993; 

Murphree, Heist, & Moe, 2014). Aside from issues affecting the environment and industry, 

reversion from a dormant to an active state can also be problematic should pathogenic bacteria 

begin rapidly reproducing—the resulting outcome of which could be onset of illness, oftentimes 

including outbreaks (Coates, 2003). Not surprisingly, the level of enzymatic expression can differ 

between metabolic states. For example, E. coli that exists in a dormant state exhibits greater 

expression of alkaline phosphatase (ALP)—especially during levels of phosphate starvation—and 

nitrate reductase, which may confer a selective advantage during periods of arrested growth 

(Clegg, Jia, & Cole, 2006; Yang & Metcalf, 2004). On the other hand, it has been observed that 

metabolically active E. coli express greater numbers of oxidoreductases, such as dehydrogenases 

for use in the citric acid cycle, and less ALP—which again is encoded during periods of phosphate 

starvation (Achbergerová & Nahalká, 2011; Almaas, Kovács, Vicsek, Oltval, & Barabási, 2004).  

Previous research has indicated the potential ALP and other non-specific enzymes have as 

vehicles for detection, including colorimetric detection (Blake, Johnston, Russell-Jones, & 

Gotschlich, 1984). Their research employed the use of ALP-bound anti-antibody during Western 

blots. Detection of ALP was achieved using tetrazolium salts, reduced to diformazan once the ALP 

is cleaved and the hydroxyl group dimerizes. This release of hydrogen ions facilitates the reduction 
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of the tetrazolium salt to diformazan, producing a strong blue color (Blake, et al., 1984). Examples 

include the reduction of tetrazolium salts to formazans in the presence of oxidoreductases, such as 

dehydrogenases, as well as reduction to p-nitrophenyl-phosphate in the presence of ALP (Berridge, 

Herst, & Tan, 2005; Bessey, Lowry, & Brock, 1946). In the presence of these non-specific 

enzymes, onset of color change occurs within min, lending strength to their use as tools for the 

rapid detection of microorganisms. That said, due to their wide variety of uses in microbial 

detection, PADs have been coupled with these tetrazolium salts to non-specifically detect bacteria, 

including the detection of various metabolic states (Hice, Santoscoy, Soupir, & Cademartiri, 2018). 

Researchers have taken advantage of the use of these non-specific enzymes to rapidly detect a 

variety of bacterial species at differing metabolic states. This is achieved using tetrazolium salts, 

2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) and 5-

methylphenazin-5-ium methyl sulfate (PMS) for metabolically active bacteria, and a mixture of 

INT and nitrophenyl phosphate (PNPP) for dormant bacteria, coupled with PADs (Hice et al., 

2018). Although specificity in identification of microorganisms is of interest throughout this 

review, it is important to address rapid methods that may not employ specific tools of detection, 

yet are critical for the identification of other important aspects of detection, such as the 

determination of metabolic states of bacteria. 

1.3 Detection of Foodborne Pathogens Using Bacteriophages 

At first glance, the use of non-specific enzymes in the detection of foodborne pathogens 

appears at a disadvantage when compared to more explicit methods of microbial detection yet to 

be discussed. These methods, such as nucleic-based amplification, are typically as or more 

sensitive, and can be highly specific in the detection of a specific organism of interest. However, 

such methods have several disadvantages: they require more time, are laborious and can be 
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expensive—especially when compared to colorimetric detection using PADs. Nevertheless, the 

lack of specificity using ALP and oxidoreductases can be detrimental, especially in manufacturing 

processes where identification and detection of an organism of interest is crucial, as in meat, 

poultry and dairy processing plants. That said, to address this lack of specificity during detection, 

researchers have turned to bacteriophages as a sensitive and specific low-cost alternative to 

microbial detection (Hice et al., 2018). First reported in 1915, bacteriophages are virus particles 

that infect, replicate and have the potential to lyse bacteria (Entis et al., 2001). Composed of protein 

and either DNA or RNA, bacteriophages are unable to replicate without a host bacterium, and 

instead utilize bacterial cell machinery to replicate (Entis et al., 2001). For detection purposes, it 

is important to note that—although cell contact is described as a random event—bacteriophage 

replication will only occur if the host cell maintains site-specific receptors for a particular 

bacteriophage; such receptors can include lipopolysaccharides, proteins, pili, flagella and teichoic 

acids to name a few (Entis et al., 2001). Through these site-specific receptors, and variations 

thereof, bacteriophages can maintain host specificity to genus, making them key components in 

low-cost methods of detection (Entis et al., 2001).  

The combined use of tetrazolium salts and bacteriophages has been successfully used to 

detect and capture bacteria of interest, such as E. coli and Salmonella (Hice et al., 2018). Such 

methods have taken advantage of the reactivity and robustness of the bacteriophage, and have 

effectively adsorbed on paper to operationalize a low-cost, portable assay for microbial detection 

(Hice et al., 2018). It is important to note that previous researchers have investigated the bacterial 

capture ability bacteriophages possess (Anany, Chen, Pelton, & Griffiths, 2011). Specifically, 

bacteriophages have been used to control the presence of such notable foodborne pathogens as, E. 

coli O157:H7 and Listeria monocytogenes (Anany et al., 2011). To achieve this, bacteriophages, 
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specific to these organisms, were bound to positively charged cellulose membranes—the 

negatively charged head of the bacteriophage interacts with the positive cellulose membrane—

while control and reduction in bacterial growth was observed using bacteriophage-treated ready-

to-eat (RTE) meats (Anany et al., 2011). Aside from the aforementioned example, a variety of 

bacteriophage-based approaches exist, and have been actively studied for the detection of 

foodborne pathogens, including Salmonella and E. coli O157:H7 (Favrin, Jassim, & Griffiths, 

2003). In some examples, target organisms are captured and concentrated using immunomagnetic 

separation (IMS), which facilitates specific binding to target cells through the use of antibody-

coated magnetic beads (Entis et al., 2001; Favrin, Jassim, & Griffiths, 2000). The beads are then 

captured by a nearby magnet (usually placed on the side of the tube), effectively concentrating and 

purifying the cells from the food matrix (Entis et al., 2001). IMS is used in place of lengthy 

enrichment steps, reducing assay time by up to 24 hours, while the purified mixture can easily be 

coupled with a variety of detection methods, including enzyme-linked immunosorbent assays 

(ELISAs) and nucleic-based amplification methods (Entis et al., 2001; Favrin et al., 2000; Favrin 

et al., 2003).  

To recapitulate, capture and concentration of target cells is achieved by IMS, while 

detection is facilitated using bacteriophage. In one such study, Salmonella and E. coli O157:H7 

were detected in a variety of food matrixes, including skimmed milk powder, chicken rinses and 

ground beef (Favrin et al., 2003). Using anti-Salmonella or anti-E. coli DynabeadsTM, target cells 

were captured and purified as previously described (Favrin et al., 2003). Concentrated volumes 

(108 PFU/mL) of either SJ2 bacteriophage (Salmonella) or LG1 bacteriophage (E. coli O157:H7) 

were added to the sample and incubated at 37 °C to allow attachment of the bacteriophage to the 

host cell (Favrin et al., 2003). Progeny bacteriophage were released following resuspension of the 
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bead-bound cells, allowing for amplification using healthy Salmonella or E. coli cells, referred to 

as signal amplifying cells (SACs). Optical density (OD) was determined before and after a brief 

incubation period (1.5 to 2 hours at 37 °C) when the addition of the progeny phage to the SACs 

occurred (Favrin et al., 2003). A reduction in OD was calculated as a percentage of the negative 

control value (sterile broth), where a positive result was recorded as 70 percent as or less than the 

average negative control (Favrin et al., 2000; Favrin et al., 2003). Using data collected from 

artificially inoculated food samples, 70 percent generated consistent discernment between positive 

and negative samples (Favrin et al., 2000). Salmonella, LOD was identified as 2 to 3 CFU/ 25 mL 

in skimmed milk powder, chicken rinses and ground beef (Favrin et al., 2003). It is important to 

note that Salmonella was detected in all three food types, which is impressive considering that 

both chicken rinses and ground beef contain substantial amounts of background flora (Favrin et 

al., 2003). Yet, despite the assay’s success in detecting Salmonella and E. coli O157:H7 

individually, it was not successful in yielding reliable results when the two organisms were 

combined—especially when the ratio of the organisms differed (Favrin et al., 2003). As described, 

this assay relies on the characteristic infection cycle and specificity of the bacteriophage towards 

a target host cell, and consequently does not require manipulation of the bacteriophage genome to 

achieve detection (Favrin et al., 2000). 

Although effective in detecting Salmonella in complex food samples, it is important to note 

that the SJ2 bacteriophage is not specific for a particular Salmonella serovar (for example, 

Enteritidis); however, this bacteriophage is also not broad enough to be used as a tool for a generic 

test of Salmonella (Favrin et al., 2000; Favrin et al., 2003). Research suggests that better 

bacteriophage selection may allow for the development of a generic test for Salmonella using this 

IMS-bacteriophage assay (Favrin et al., 2000). That said, a possible solution would be use of the 
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R-core-specific Felix-O1 bacteriophage, a Salmonella-specific bacteriophage that relies on LPS 

R-core terminating in N-acetylglucosamine for ideal infection of the host cell (McConnell & 

Schoelz, 1983). The use of this bacteriophage in the detection of Salmonella is advantageous, as 

previous research indicates that 98.2 percent of tested Salmonella strains were successfully lysed 

by this bacteriophage—this includes 653 strains of Salmonella (Welkos, Schreiber, & Baer, 1974). 

A similar study using more than 5,000 Salmonella strains found that, of the strains tested, 98 to 

99.5 percent were susceptible to lysis by the Felix-O1 bacteriophage (Favrin et al., 2000; 

Gunnarsson, Hurvell, & Thal, 1977; Hirsh & Martin, 1983a). Use of the Felix-O1 bacteriophage 

can be coupled with several methods of detection, including high-performance liquid 

chromatography (HPLC), where HPLC was used to detect Salmonella via an increase in the 

number of bacteriophage associated with host cell lysis and replication of bacteriophages (Entis et 

al., 2001; Hirsh & Martin, 1983a).  

Following a two hour incubation period where interaction between the bacteriophage and 

host cells occurred, the mixture was treated with chloroform, centrifuged and subsequent cell 

debris was discarded (Entis et al., 2001; Hirsh & Martin, 1983a). The remaining solution, referred 

to as the bacteriophage supernatant, was injected into the HPLC column, where a detector response 

was recorded at 3.2 min (Entis et al., 2001; Hirsh & Martin, 1983a). For Salmonella, LOD was 

identified as 106 CFU/mL. Moreover, detection was only achieved using Salmonella, and was not 

obtained when various Gram-negative and positive organisms were used—including closely 

related members of the Enterobacteriaceae, such as E. coli, Klebsiella pneumoniae and Serratia 

marcescens (Hirsh & Martin, 1983a). However, despite its selectivity in detection, this method has 

a significant disadvantage when compared to rapid methods yet to be discussed; namely, it requires 

high concentrations of bacteria to achieve detection (Entis et al., 2001; Hirsh & Martin, 1983a). 
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Modifications to the design of this method (incorporation of large pore electropositive filters and 

overnight incubation) allowed for the detection of less than five cells per mL in artificially 

contaminated milk samples (Entis et al., 2001; Hirsh & Martin, 1983b). The use of the filters 

facilitated the removal of bacteria from the milk samples, while overnight enrichment in brain 

heart infusion (BHI) broth with added brilliant green dye suppressed the growth of coliforms—

ensuring that 75 to 100 percent of the total population of bacteria consisted of Salmonella (Entis 

et al., 2001; Hirsh & Martin, 1983b). Subsequent detection was achieved as previously described 

(Hirsh & Martin, 1983a). 

1.4 Multiplex Detection of Foodborne Pathogens by Real-Time PCR 

Common assays employed in the detection of foodborne pathogens—though effective in 

identification—are often time consuming, requiring up to seven days for processing, disrupting 

high capacity processes, resulting in higher cost and increased waste (Omiccioli et al., 2009). As 

a result, research focuses on developing rapid analytic methods of detection (Omiccioli et al., 

2009). One such method often employed in industry, is polymerase chain reaction (PCR). 

Developed in 1983, PCR is not in any way a “new” method of detection, however, it is the basis 

for many bacterial detection methods used for both industrial and research purposes (Entis et al., 

2001; Lazcka, Del Campo, & Muñoz, 2006). PCR is a rapid DNA-based detection method focused 

on the isolation, amplification and quantification of short DNA sequences in periods of five to 24 

hours, depending upon the variation employed (Lazcka et al., 2006). PCR works by denaturing 

the target double stranded DNA (dsDNA) using high heat (94–98 °C), which results in separation 

of the two strands (Entis et al., 2001; Lazcka et al., 2006). This separation facilitates annealing of 

specific primers to complementary target DNA strands at lower temperatures (48–72 °C), now 

serving as templates for extension (68–72 °C), where the enzyme, DNA polymerase, subsequently 
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adds nucleotide bases (dNTPs) onto the ends of each primer (Entis et al., 2001; Lazcka et al., 

2006). This results in copies of two new dsDNA strands, which consequently serve as templates 

for each additional PCR cycle, doubling each time; this allows for exponential amplification of 

DNA, which is then able to be detected (Entis et al., 2001; Lazcka et al., 2006). 

Several sensitive and rapid bacterial detection methods that incorporate PCR exist, each of 

which are important tools for the identification of foodborne pathogens (Bhagwat, 2003; Omiccioli 

et al., 2009). The simultaneous detection of several common foodborne pathogens is 

advantageous, as the reduction of different analyses may bring increased economy to the process, 

especially when compared to conventional detection techniques (Kawasaki et al., 2005). In one 

amplification reaction, multiplex PCR (mPCR) can easily detect multiple targets, while Real-Time 

or quantitative PCR (qPCR) techniques can be used simultaneously with mPCR (Omiccioli et al., 

2009). Such techniques eliminate both post-PCR processing of samples and risk of cross-

contamination, significantly reducing time required for analysis (Omiccioli et al., 2009). As 

described by Bhagwat (2003), qPCR employs a fluorescent dye, such as SYBR Green I—

fluorescent emission is achieved when the dye attaches to the target amplicon (Lazcka et al., 2006). 

The fluorescent signal is measured through the optical detection of amplified targets, which 

consequently indicate the presence of double-stranded DNA or other dual-labeled probes, 

facilitating observation of the amplification of DNA in “real time” (Lazcka et al., 2006; Omiccioli 

et al., 2009). By conducting qPCR, researchers can eliminate post-amplification steps, such as the 

laborious gel electrophoresis, which enables detection of the amplified sequence (Lazcka et al., 

2006). In milk, the specificity of multiplex qPCR has been evaluated, and results indicate that this 

assay is 100 percent inclusive for target species, and 100 percent exclusive for non-target strains 

(Omiccioli et al., 2009; Singh, Batish, & Grover, 2011). Recovery of foodborne pathogens from 
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dairy products is often hampered by low levels of contamination (Omiccioli et al., 2009). It is 

important to note that a major limitation of PCR-based detection methods is the inability to 

distinguish between living and dead cells, as DNA is present regardless of cell viability (Lazcka 

et al., 2006). To combat this problem, Reverse Transcriptase (RT-PCR) is employed in the 

detection of solely viable cells (Lazcka et al., 2006). The enzyme, reverse transcriptase (RT) acts 

by synthesizing single stranded DNA from RNA (Lazcka et al., 2006). Although multiple types of 

RNA exist, messenger RNA (mRNA) is specifically used in RT-PCR, as it has a short half-life, 

and is therefore only present in living cells (Yaron & Matthews, 2002).  

To reliably detect the presence of foodborne pathogens, studies have demonstrated the need 

for an enrichment step to improve sensitivity. Without enrichment, detection of bacterial presence 

in contaminated milk samples was unreliable (Omiccioli et al., 2009), and detection of non-

specific products was observed (Singh et al., 2011). As observed by Omiccioli et al. (2009) and 

Singh et al. (2011), following the introduction of an enrichment step, LOD was respectively 

measured at 1 CFU per 25 mL and 1 CFU per mL for each pathogen sampled (in this case, 

Salmonella spp., Listeria monocytogenes and Escherichia coli O157). Processing time was 

reduced to 48 hours from seven or more days necessary for conventional culture techniques 

(Omiccioli et al., 2009). A variety of multi-pathogen enrichment broths are available, and reduce 

the amount of space, time, cost and labor required to culture microorganisms (Garrido et al., 2013a; 

Kim & Bhunia, 2008). Selective enrichment broths are a necessity when testing for the presence 

of foodborne pathogens in food and environmental samples (Suo & Wang, 2012). Such media is 

necessary to enrich target organisms within the sample, while aiding in recovery of stressed or 

injured cells (Suo & Wang, 2012; Wu, 2008). SEL, a selective enrichment broth is useful for 

simultaneous growth of Salmonella enterica, Escherichia coli O157:H7 and Listeria 
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monocytogenes, which can aid in regulating the testing of foods at risk for multiple-pathogen 

contamination in the food processing industry (Kim & Bhunia, 2008). SEL, unlike the 

commercially available Universal Preenrichment Broth (UPB), contains selective inhibitory 

agents, and may be more appropriate for samples with large amounts of background microflora, 

such as unprocessed, raw foods (Bailey & Cox, 1991; Kim & Bhunia, 2008; Suo & Wang, 2012).  

Nonselective media, such as UPB, Buffered Peptone Water (BPW) and No. 17 Medium 

(also known as TA10 Broth) show promise in recovery of injured target pathogens, however, may 

also enrich background microflora, rendering them inadequate for use in complex food samples 

(Suo & Wang, 2012). The enrichment and recovery of target pathogens—especially those that may 

be physiologically stressed or damaged—is critical, as injured microorganisms may repair 

themselves under more optimal conditions, such as food and feed products meant for human or 

animal consumption (Wu, 2008). While some researchers have demonstrated the effectiveness of 

No.17 Medium in recovering target pathogens, such studies employed BPW or UPB as a control 

medium, rather than SEL (Garrido et al., 2013a; Garrido et al., 2013b). Furthermore, as the 

aforementioned studies demonstrated, SEL also supports bacterial growth at 101 CFU/mL (Kim & 

Bhunia, 2008). When coupled with mPCR, SEL exhibits low levels of detection for all three 

pathogens tested, indicating that it is a suitable enrichment broth for such techniques (Kim & 

Bhunia, 2008; Suo & Wang, 2012). In an industrial environment, the use of enrichment media is 

advantageous, as the same broth can be used to simultaneously enrich target pathogens, while food 

and environmental samples are tested for bacterial presence within 24 hours (Kim & Bhunia, 2008; 

Suo & Wang, 2012). This is beneficial for screening large quantities of samples for the occurrence 

of foodborne pathogens in food processing environments and is an improvement on traditional 

culturing methods that may require up to seven days for analysis (Suo & Wang, 2012). 
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1.5 Multiplex Detection of Foodborne Pathogens by RPA 

In recent years, recombinase polymerase amplification (RPA) has demonstrated promise 

as a means for the detection of a variety of microbial pathogens and viruses (Murinda et al., 2014). 

During RPA, the recombinase/oligonucleotide primer complex initiates amplification through the 

identification of homologous target sequences within duplex DNA (Murinda et al., 2014; 

Piepenberg, Williams, Stemple, & Armes, 2006; TwistDX, 2018; Yan et al., 2014). Once the 

homologous target sequence is identified, the recombinase-primer complex separates the strands 

of DNA, consequently allowing the primer and sequence to hybridize (Yan et al., 2014). Unlike 

PCR which employs use of high heat to separate duplex DNA, RPA instead uses an enzyme 

(recombinase)—this is similar to Helicase-Dependent Amplification (HDA), which uses helicase 

to separate duplex DNA (Li & Macdonald, 2015). Single stranded DNA-binding proteins (SSB) 

aid in the hybridization process by preventing separation of the primer-sequence hybrid, and 

elongation occurs following the formation of a primer-DNA complex (Yan et al., 2014). If the 

target sequence is present in the sample, DNA polymerase (Bacillus subtilis Pol I, Bsu) proceeds 

with elongation and replication, using the single stranded DNA as a template (Li & Macdonald, 

2015; Murinda et al., 2014; Yan et al., 2014). Much like PCR, exponential amplification is 

achieved as the two copies of newly synthesized duplex DNA acts as templates for subsequent 

cycles (Yan et al., 2014).  

Fortunately, RPA requires only two primers (forward and reverse) for amplification, unlike 

other isothermal methods of detection, such as loop-mediated isothermal amplification (LAMP), 

which requires six primers (Euler et al., 2013; Kersting, Rausch, Bier, & von Nickisch-Rosenegk, 

2014; Santiago-Felipe, Tortajada-Genaro, Puchades, & Maquieira, 2014). Moreover, if a 

fluorescent probe is used, this reaction can be monitored in real-time, as in qPCR (Piepenberg et 
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al., 2006). During this process, the probe is degraded following hybridization, subsequently 

releasing a fluorophore. The amount of fluorophore present increases as amplification progresses, 

which consequently enables real-time observation and measurement (Murinda et al., 2014; 

Piepenberg et al., 2006). Recently, TwistDX (www.twistdx.co.uk) developed several RPA kits for 

the commercial detection of common foodborne pathogens, including Salmonella, Listeria 

monocytogenes and Campylobacter species, through the amplification and detection of highly 

specific genes for pathogenicity, such as the invA gene in Salmonella (Murinda et al., 2014). The 

lyophilized reaction mix remains stable, even during non-refrigerated transportation (Lillis et al., 

2016; TwistDX, 2018). To detect foodborne pathogens, a low-cost fluorescent reader device is 

employed to monitor the amplification of target nucleotide sequences in real-time (Murinda et al., 

2014). Intercalating dyes or fluorescent probes can be used in order to monitor the assay in real-

time.  

RPA is advantageous as a method of detection, as it is rapid, sensitive and highly specific, 

much like PCR (Murinda et al., 2014; Yan et al., 2014). However, unlike PCR, RPA works at a 

constant cellular temperature (37–39 °C) and is therefore suitable for the detection of nucleic acids 

in live cells (Kersting et al., 2014; Piepenberg et al., 2006; Yan et al., 2014). Moreover, RPA is 

user-friendly, and does not require a thermal cycling device or a highly trained technician, 

consequently reducing cost (Yan et al., 2014). Using a small, portable heating device (such as the 

TwirlaTM, available from TwistDX) this novel, effective method of detection yields identifiable 

results within 10 min (TwistDX, 2018). The TwirlaTM device can heat the reaction tubes to the 

temperature necessary for measurement (TwistDX, 2018). The portability of the device is due to 

its small size—this makes it a useful tool for use in the field (TwistDX, 2018). Whereas 

conventional thermocyclers remain laboratory-bound, the TwirlaTM is both lightweight and 
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portable, making it an essential tool for field-work, or in environments without access to a 

laboratory. In addition, the cost of the TwirlaTM incubator is significantly less than that of a 

thermocycler, a benefit to industry, as well as underdeveloped countries. As cost and analysis time 

are reduced, RPA is more suitable than PCR for the detection of foodborne pathogens in food 

processing industries, in the field or in regions where skilled technicians are not available. 

Much like PCR, multiplex detection techniques can be coupled with RPA to 

simultaneously detect several microbial pathogens. While this method of analysis is not widely 

used, studies that incorporate established multiplex detection techniques into the RPA protocol 

have shown promise. Kersting et al. (2014) demonstrated the simultaneous detection of three 

unrelated, yet significant, microbial pathogens—Neisseria gonorrhoeae, Salmonella enterica and 

methicillin-resistant Staphylococcus aureus (MRSA), while Choi et al. (2016) demonstrated the 

use of RPA in the detection of Salmonella enterica, Escherichia coli O157:H7 and Vibrio 

parahaemolyticus—three foodborne pathogens of clinical significance. In such studies, multiplex 

RPA is often transferred to biochips for point-of-care testing, and analysis takes place on the 

surface of the chip (Kersting et al., 2014). Due to the addition of high heat, PCR is not optimized 

for biochip point-of-care testing (Kersting et al., 2014; Li & Macdonald, 2015; Mauk, Liu, Sadik, 

& Bau, 2015).  

In addition, disposable lateral flow devices can also be employed (in place of biochips) in 

the detection of nucleic acids using RPA (Piepenberg et al., 2006). Nucleic acid lateral flow 

immunoassays (NALFIA) often use a sandwich assay, in which RPA forward and reverse primers 

are tagged with either 6-carboxyfluorescin (6-FAM) or biotin (Posthma-Trumpie, Korf, & 

Amerongen, 2009). The 6-FAM is recognized by an anti-fluorescein antibody, bound to the 

nitrocellulose membrane of the lateral flow strip, while streptavidin-labeled gold nanoparticles 
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preferentially bind biotin (Posthma-Trumpie et al., 2009).  Following successful hybridization of 

the primers to the DNA template, and subsequent amplification, the resulting dsDNA will be 

“sandwiched” between the anti-fluorescein antibody and the streptavidin-labeled gold nanoparticle 

(Shan, Lai, Xiong, Wei, & Xu, 2015). A visualized colorimetric product is obtained due to the 

aggregation of the gold nanoparticles. These devices also contain an internal control, which 

indicates adequate flow of the sample though the strip (Posthuma-Trumpie et al., 2009). The 

internal control is commonly comprised of bound biotin, which will bind to the streptavidin-

labeled gold nanoparticles, producing a colorimetric effect (Shan et al., 2015). In general terms, 

such devices use pairs of specific antibodies for the detection of target sequences containing two 

antigenic labels, and offer a simple, low-cost solution to visualize “presence/absence” detection of 

product (Mauk et al., 2015; Piepenberg et al., 2006; Posthuma-Trumpie et al., 2009). Biochips and 

lateral flow devices, much like RPA, are portable, economical and much easier to implement 

outside of laboratory settings—all of which are valuable assets for use in the field.  

Following analysis, Kersting et al. (2014) demonstrated the highly specific amplification 

and fluorescence of all three sampled pathogens. This sensitive method was able to detect 100 

CFU/mL (N. gonorrhoeae), 10 CFU/mL (S. enterica) and 10 CFU/mL (MRSA), comparable to 

the LOD observed using multiplex qPCR (Euler et al., 2013; Kersting et al., 2014). Similarly, 

Santiago-Felipe, Tortajada-Genaro, Morais, Puchades, and Maquieira (2015) observed a LOD of 

less than 40 CFU/mL for the duplex detection of Salmonella and Cronobacter spp. isolated from 

inoculated milk. Furthermore, amplification of Salmonella was observed after 20 min, a reaction 

time that is much quicker than conventional PCR (Kersting et al., 2014). Combined with manual 

set-up, on-chip RPA analysis can be performed in 60 min—decreasing time of analysis (Kersting 

et al., 2014). If this method were fully automated, processing time and risk of contamination from 
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hands-on labor would be greatly reduced (Kersting et al., 2014; Santiago-Felipe et al., 2015). 

Overall, RPA offers the possibility of a portable, economical rapid detection technique, of use in 

non-laboratory, agricultural settings—such as farms and ranches, where contamination with 

foodborne pathogens is common. 

1.6 Automated Point-of-Care (POC) Testing of Foodborne Pathogens by RPA 

Kersting et al. (2014) concluded that the aforementioned “on-chip” analysis method of 

detection, yielding viable results in under 20 min, is considerably faster than conventional PCR 

techniques, with no detriment to sensitivity or specificity. It is possible that such a method may 

eventually evolve into a point-of-care testing device, however, further optimization would be 

required, as the system involved manual set-up, and was therefore not fully automated (Kersting 

el al., 2014). Nevertheless, without the constricting requirements of PCR, such as a thermocycling 

process, such a device could easily be simplified at low cost (Kersting et al., 2014). To achieve 

complete automation, researchers have proposed novel methods for automated point-of-care 

testing devices that couple RPA with micro total analysis systems, or more colloquially, “lab-on-

a-chip” devices (Kim, Park, Kim, & Cho, 2014; Mauk et al., 2015). Such devices maintain a strong 

potential for point-of-care testing devices, as—much like the biochips discussed by Kersting et al. 

(2014)—their miniaturized size and reduced materials consumption may lead to enhanced 

performance, while reducing contamination from hands-on labor (Kim et al., 2014).  

Unlike RPA, PCR—often considered the “gold standard” in terms of rapid detection—is 

not an adequate method of detection for point-of-care testing devices, much like the “lab-on-a-

chip” device. To recapitulate, this is due to the need for a thermocycler during denaturing, 

annealing and extension of DNA during amplification (Choi et al., 2016). In recent years, such 

automated devices have gained popularity, especially the lab-on-a-disk concept, in which 
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necessary functions are integrated within a disc-like device (Kim et al., 2014). This device 

achieved complete automation by using a single rotor, which allows for mixing of reagents 

necessary for an isothermal reaction, such as RPA (Kim et al., 2014). Much like the 

aforementioned biochips, DNA extraction, isothermal methods of detection, such as RPA, and 

signal detection can be completely carried out on a single lab-on-a-disk. Moreover, such devices 

house networks of reaction chambers, allowing for simple processing and analysis of samples, 

while reducing contamination (Choi et al., 2016; Kim et al., 2014; Liao et al., 2016; Mauk et al., 

2015). Unlike the 60 min necessary during preparation and detection of amplicons using biochips 

(Kersting et al., 2014), the automated method of lab-on-a-disk can be performed in under 30 min 

(Kim et al., 2014). Furthermore, such devices can also be designed to detect multiple pathogens, 

using several different amplification chambers as well as molecular targets (Kim et al., 2014; 

Mauk et al., 2015). 

 To determine the effectiveness of their lab-on-a-disk device using Salmonella-spiked milk 

samples, Kim et al. (2014) employed the previously mentioned and commercially available 

TwistDX amplification kit. Lysis of cells was achieved by 20 seconds of laser-assisted irradiation, 

in which magnetic beads were heated, consequently leading to cell lysis (Kim et al., 2014). 

Following this, lysate DNA was amplified for 20 min, and then transferred into the metering 

chamber, while excess liquid passed into the waste chamber. Ten microliters of RPA product was 

then moved into the dilution chamber, where it was mixed with Phosphate Buffered Saline with 

Tween 20 (PBST). Rotation of the disk allowed the metering chamber to close, while the dilution 

chamber opened. The solution was rapidly mixed through short, one second stop-and-rotation 

cycles. The mixed solution was then moved to the detection chamber, where visual detection was 

achieved after five minutes using a lateral flow device (Kim et al., 2014). LOD in the Phosphate 
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Buffered Saline (PBS) control, and Salmonella-spiked milk samples were respectively identified 

as 101 CFU/mL and 102 CFU/mL—comparable to the results obtained using either multiplex qPCR 

or RPA analysis using biochips (Euler et al., 2013; Kersting et al., 2014; Kim et al., 2014).  

 A similar study, performed by Choi et al. (2016) assessed the effectiveness of an integrated 

centrifugal microdevice for the simultaneous detection of three foodborne pathogens (Salmonella 

enterica, Escherichia coli O157:H7 and Vibrio parahaemolyticus) in spiked milk samples. This 

disk-like device was designed similarly to the aforementioned device used by Kim et al. (2014), 

and contained a sample reservoir, as well as aliquoting, reaction and waste chambers (Choi et al., 

2016). To allow for processing of samples, chambers were connected by channels and connecting 

microchambers, while solutions were mixed at various controlled centrifugation speeds. At 800 

rpm, the mixed sample of foodborne pathogens was distributed into four separate aliquoting 

chambers. As speeds increased to 3000 rpm, the RPA reagents were transferred to the reaction 

chambers, while speeds increased even further, to 5000 rpm, as bacterial samples were loaded into 

each reaction chamber (Choi et al., 2016). Mixing of bacterial samples and RPA reagents was 

facilitated by shaking the chip-like device between -600 rpm and +600 rpm for 30 seconds. The 

mixture was heated to 39 ˚C, on-device, and fluorescence was measured every two minutes (Choi 

et al., 2016). LOD for the bacterial samples was identified as 1250 cells per mL, again, results 

comparable to previously described studies.  

 Although lab-on-a-chip devices have gained popularity among researchers, few have 

sought to couple POC testing with smartphones, to reduce cost by eliminating the need for a 

fluorescence reader device (Liao et al., 2016). In this design, both the smartphone’s flashlight and 

camera are used during optical detection; the flashlight (coupled with an excitation optical filter) 

is used to excite the fluorescent dye, while the camera is used to record fluorescence emission in 
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real-time (Liao et al., 2016). Considering the prevalence of mobile phones, it is surprising that 

such devices are often overlooked when new diagnostic systems are implemented (Liao et al., 

2016). To recapitulate, as mobile phones are readily available—even ubiquitous in some 

countries—it would not be out of the realm of possibility to infer that the consumer may already 

have a smartphone in their possession, and that the cost of the phone can be subtracted from the 

overall cost of the POC test (Liao et al., 2016).  

1.7 Novel Sample Preparation Techniques Using Magnetic Ionic Liquids 

Apart from the lab-on-a-chip devices, nucleic acid amplification can be improved though 

the use of modified sample preparation techniques that facilitate isolation and preconcentration of 

bacteria. Food matrices are often complex, and inadequate preconcentration may hamper detection 

limits using nucleic acid amplification, including PCR and RPA (Clark, Purslow, Pierson, 

Nacham, & Anderson, 2017a). Background microflora present in the food matrix may outcompete 

the target microorganism, while interference or inhibition may stem from the matrix itself, both of 

which may attribute to false-negative results and improper interpretation. Detection is often 

hampered by suspended sample matrix solids, viscosity and non-uniform distribution of the target 

organism in the sample matrix, requiring the use of laboratory equipment (vortex, centrifuge) or 

sample preparation reagents (PrepMan Ultra), to achieve adequate preconcentration (Clark et al., 

2017a; Hice, Clark, Anderson & Brehm-Stecher, 2019). To remedy this, magnetic separation 

techniques have been used to effectively enrich target microorganisms from environmental 

samples. When added to a sample, magnetoactive substrates, often coated with antibodies (as with 

IMS), interact with target microorganisms, and are extracted using an applied magnetic field (Clark 

et al., 2017a; Entis et al., 2001; Hice et al., 2019). To recapitulate, the target microorganisms are 

captured and preconcentrated, facilitating simple combination with several detection methods, 
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including nucleic-based amplification methods (Entis et al., 2001; Favrin et al., 2000; Favrin et 

al., 2003). While selectivity is achieved using immunoaffinity, due to the use of requisite 

antibodies, these methods are unstable and costly (Clark et al., 2017a).  

Magnetic ionic liquids (MIL) are non-volatile, hydrophobic solvents that exhibit 

susceptibility to magnetic fields. Increased susceptibility to magnetic fields may be achieved by 

synthetic design, as multiple paramagnetic components can be added to the cation/anion moiety 

(Clark et al., 2017a). The composition of large, flexible ions, coupled with negative Gibbs free 

energy of solvation, thermodynamically favors the liquid state, facilitating liquid-liquid 

microextraction from aqueous sample matrices (Mester, Wagner, & Rossmanith, 2010). Moreover, 

due to their distinctive properties (nonvolatile, nonflammable, chemically and thermally stable), 

MILs are environmentally attractive alternatives to many traditional organic solvents (Clark et al., 

2017a; Mester et al., 2010; Pierson, Nacham, Clark, Nan, Mudryk, & Anderson, 2017). Their 

hydrophobicity allows for fine dispersal throughout various sample matrices, which is 

advantageous, considering use of magnetic beads (affinity, immunoaffinity) suffers from 

diminished extraction efficiencies due to settling and aggregation (Clark, Varona, & Anderson, 

2017b). Use of a solid substrate (beads, nanoparticles, microarrays) adds additional complexity 

due to slow binding and hybridization of nucleic acids at the solid-liquid interface (Clark et al., 

2017b). The vulnerability and reactiveness of MILs to magnetic fields—coupled with their unique 

properties—is advantageous, and facilitates the possibility for simple, rapid liquid-liquid 

preconcentration of microorganisms from aqueous sample matrices. In fact, MILs have been 

successfully applied as extraction phases in liquid-liquid microextraction techniques for the 

capture and pre-concentration of E. coli from aqueous milk samples (Clark et al., 2017a).  
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Preconcentration of E. coli was achieved following direct addition of 15 μL of a 

trihexyl(tetradecyl)phosphonium nickel(II) hexafluoroacetylacetonate ([P66614+][Ni(hfacac)3–]) 

MIL to an artificially spiked 2 mL 2% milk sample. Through vortex agitation, microdroplets of 

MIL were homogenously dispersed throughout the aqueous sample, while a 0.9-T magnetic field 

was applied to the vial, allowing for preconcentration of the MIL-bound E. coli, and subsequent 

removal of the aqueous phase (Clark et al., 2017a). Following a brief wash step with deionized 

water, which facilitates removal of any remaining aqueous suspension, MIL-bound E. coli were 

recovered by addition of nutrient-rich media and successive vortexing steps (Clark et al., 2017a). 

Viable cells were recovered from this “back-extraction,” and were analyzed via selective plating 

or using PCR. Using the ([P66614+][Ni(hfacac)3–]) MIL, detection was achieved as low as 104 

CFU/mL, however, when coupled with qPCR, LOD was reported as 102 CFU/mL (Clark et al., 

2017a). The use of MILs as a tool for microbial extraction is advantageous, as it facilitates simple, 

rapid preconcentration of target microorganisms in place of more expensive and less stable 

alternatives that rely on use of antibodies, while it can easily be coupled with conventional culture-

based methods, PCR and qPCR, resulting in detection and identification. Yet, use of selective 

plating adds time-to-result, while qPCR commands significant initial investment. That said, as a 

potential alternative, the combined use of MIL-based sample preparation and RPA is valuable, and 

provides a simple, streamlined alternative to orthodox detection techniques. MIL-based extractions 

impart centrifuge-free, single-tube simplicity and rapidity, while RPA exhibits promise as a non-

cycling rapid, sensitive and specific method of detection. 

1.8 Conclusions 

Conventional methods used for the detection of Salmonella in dairy products and in food 

processing environments are often slow, require highly skilled technicians or are laboratory bound. 
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Such methods of detection are unsuitable in agricultural settings, where access to proper laboratory 

equipment is not available. Because of this, the need for a sensitive, portable and rapid method of 

detection of foodborne pathogens is required, and several techniques have been introduced in 

recent years (Vasavada, 1993). Detection methods incorporating established PCR techniques are 

considered the “gold-standard” in the identification of foodborne pathogens. Such methods, such 

as qPCR and mPCR techniques, are regarded as sensitive and rapid, and reduce the expense and 

preparation time required by conventional detection techniques. Unfortunately, much like 

traditional PCR, qPCR and mPCR techniques do not eliminate the problems encountered when 

conventional methods of detection are employed. Although qPCR and mPCR slightly reduce cost, 

these techniques still require a thermal cycling device and a highly trained technician. Moreover, 

these methods remain laboratory-bound, and are not suitable for use in the field.  

Decades of research has demonstrated that PCR is not the “end-all” solution to the 

establishment of a sensitive, portable and rapid detection method. Enzymatic colorimetric methods 

of detection, as well as use of paper-bound bacteriophages require less processing time at a lower 

cost. While selectivity may present as an issue, due to use of non-specific enzymes, these methods 

have been successfully employed in distinguishing between metabolic states (Hice et al., 2018). 

On the other hand, RPA has demonstrated promise in recent years as a method of detection, as it 

is rapid and maintains similar levels of specificity to the more established PCR methods. 

Furthermore, RPA does not require a thermal cycling device, and works at cellular temperatures. 

RPA offers greater portability and ease-of-use than PCR, which is advantageous for point-of-care 

testing in agricultural settings where contamination with foodborne pathogens commonly occurs. 

When combined with improved sample preparation techniques, as with the lab-on-a-chip or MILs, 

detection limits improve, and reduce time-to-result. The utility of MILs for rapid extraction and 



www.manaraa.com

33 
 

concentration of pathogenic microorganisms from food samples provides a means for physical 

enrichment that is compatible with RPA. 

While MILs suffer from innate lack of selectivity, investigation into incorporating a 

selective element is underway. Use of peptides or other functional groups may be used to attain 

selectivity, while sequence-specific capture of DNA has been achieved using ion-tagged 

oligonucleotides (ITOs) (Clark et al., 2017b). Imidazolium-based ion tags, which facilitate 

interactions between the ITO probe and hydrophobic MIL, have been added to oligonucleotides; 

this interaction has demonstrated profound improvement of contact between the probe and the 

MIL (Clark et al., 2017b). Following hybridization between the ITO and target DNA, the MIL-

supported ITO can be extracted from solution, and analyzed using qPCR. However, as MILs have 

been successfully combined with both qPCR and RPA, it is possible that the use of MIL-supported 

ITOs may demonstrate similar success in improved DNA extraction as qPCR. This combined 

approach would certainly maintain several advantages including: 1) time-to-result, 2) low-cost, 3) 

ease of operation and 4) simple interpretation. Such an approach to rapid detection may enable 

simple and low-cost sampling of pathogenic microorganisms, which can be used to improve 

industrial efficiency. 

1.9 Organization of the Dissertation 

Chapter 2 describes an approach to paper-based enzymatic colorimetric assays for the 

identification of metabolic state in Salmonella Typhimurium and E. coli from environmental 

samples. Oxidoreductases and alkaline phosphatases, non-specific bacterial enzymes present at 

varying levels depending on metabolic state, were employed. Respectively, these enzymes act by 

reducing tetrazolium salts to purple formazans, or cleaving para-nitrophenyl-phosphate salts to 

yellow para-nitrophenol. Color change occurred in less than 60 min, and was observed at 103 CFU 
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and quantifiable at 106 CFU. Specificity was added by immobilizing bacteria-specific 

bacteriophage (P22 or T4) on paper, facilitating detection as low as 102 CFU or 104 CFU, 

respectively. 

Chapter 3 describes the combined use of MILs and RPA for the capture, concentration and 

detection of Salmonella Typhimurium in water, 2% milk, almond milk and liquid egg product 

samples. Two MILs were investigated for their bacterial extraction efficiencies, and viable cells 

were recovered from the MIL-phase using a modified Luria Bertani (LB) broth. Following 

extraction, a 20 min isothermal RPA assay was employed, and results were visualized using gel 

electrophoresis or NALFIA. Sodium acetate heat packs were used as a chemical heat source during 

amplification. The combined approach facilitated detection as low as 103 CFU mL-1 in 30 to 45 

min.  

Chapter 4 describes the investigation into the physical properties of two MILs, including potential 

antimicrobial effects. Here, a panel of Gram-negative bacteria were surveyed, including nine 

serotypes of Salmonella and eight strains of E. coli O157:H7. Non-selective and selective media 

were used to screen for potential deleterious effects of the MILs, including cell injury, over time. 

MIL-based exposure was compared to another ionic liquid, 1-ethyl-3-methylimidazolium 

thiocyanate ([EMIM+]SCN-), which has used for extraction of pathogens from food and has been 

reported to cause cellular injury. While the ([P66614+][Ni(hfacac)3–]) MIL did not possess detectable 

antimicrobial activity, exposure to the ([P66614+][Dy(hfacac)4–]) MIL resulted in cell death. 

Investigation into the individual components of the ([P66614+][Dy(hfacac)4–]) MIL suggested that 

the ammonium salt was largely responsible for the cytotoxic effects observed.  
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Abstract 

Switching between metabolically active and dormant states provides bacteria with 

protection from environmental stresses, and allows rapid growth under favorable conditions. This 

rapid growth can be detrimental to the environment, e.g., pathogens in recreational lakes, or to 

industrial processes, e.g., fermentation, making it useful to quickly determine when the ratio of 

dormant to metabolically active bacteria changes. While a rapid increase in metabolically active 

bacteria can cause complications, a high number of dormant bacteria can also be problematic, since 

they can be more virulent and antibiotic-resistant. To determine the metabolic state of Escherichia 

coli and Salmonella Typhimurium, we developed two paper-based colorimetric assays. The color 

changes were based on oxidoreductases reducing tetrazolium salts to formazans, and alkaline 

phosphatases cleaving phosphates from nitrophenyl-phosphate salt. Specifically, we added 

iodophenyl-nitrophenyl-phenyl tetrazolium salt (INT) and methylphenazinium methyl sulfate to 

metabolically active bacteria on paper, and INT and para-nitrophenyl phosphate salt to dormant 

bacteria on paper. The color changed in less than 60 minutes, and was generally visible at 103 CFU 

and quantifiable at 106 CFU. The color changes occurred in both bacteria, since oxidoreductases 

and alkaline phosphatases are common bacterial enzymes. On one hand, this feature makes the 

assays suitable to a wide range of applications, on the other, it requires specific capture, if only 
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one type of bacterium is of interest. We captured Salmonella or E. coli with immobilized P22 or 

T4 bacteriophages on the paper, before detecting them at levels of 102 or 104 CFU, respectively. 

Determining the ratio of the metabolic state of bacteria or a specific bacterium at low cost and in 

a short time, makes this methodology useful in environmental, industrial and health-care settings.  

2.1 Introduction 

A large fraction of bacteria exist in a dormant state, including over 30% in sludge, 83% in 

soil, and 50% or more in lakes (Lennon & Jones, 2011). When dormant bacteria change to an 

active metabolic state, their sometimes rapid reproduction can lead to a bacterial bloom. In a 

waterbody, a bloom can cause anoxic conditions in the environment, resulting in a fish kill, while 

in an industrial setting it could potentially alter the yield and product properties during 

fermentation (Hallegraeff, 1993; Murphree, Heist, & Moe, 2014). Rapidly reproducing pathogenic 

bacteria can cause disease outbreaks, especially since dormancy can increase pathogenicity and 

antibiotic resistance (Becker, Selbach, Rollenhagen, Ballmaier, Meyer, Mann, & Bumann, 2006; 

Coates, 2003; Lewis, 2007; Poncet et al., 2009). To prevent, or at least counteract these effects, 

we need methods to determine changes in the ratio of dormant and metabolically active bacteria 

quickly, and preferably techniques that can be applied directly in the field. 

When the metabolic state of bacteria changes, the type and level of enzymes expressed 

change (Ayyash, Wu, & Ravi Selvaganapathy, 2014). For example, dormant E. coli express more 

alkaline phosphatases (ALP) and oxidoreductases associated with survival, such as nitrate 

reductase, compared to metabolically active E. coli, which express less ALP, and oxidoreductases 

in their central metabolism (Almaas et al., 2004 Achbergerová et al., 2011; Clegg, Jia, & Cole, 

2006; Yang & Metcalf, 2004). A range of viable but non-culturable (VBNC) bacteria show similar 

behavior including Campylobacter jejuni, Helicobacter pylori, and Salmonella (Becker et al., 
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2006; Jones, 2001; Li, Mendis, Trigui, Oliver, & Faucher, 2014). Both oxidoreductases and 

alkaline phosphatases react with dyes, including tetrazolium salts that reduce to formazans for 

oxidoreductases and nitrophenyl-phosphates for ALP (Berridge, Herst, & Tan, 2005; Bessey, 

Lowry, & Brock, 1946; Blake, Johnston, Russell-Jones, & Gotschlich, 1984; Rodriguez, Phipps, 

Ishiguro, & Ridgway, 1992). Tetrazolium salts are commonly used to determine the number of 

viable cells in solutions, since both the kinetics of the color change and the final color intensity is 

related to the concentration of the enzymes (Berridge et al., 2005; Blake et al., 1984).  

Colorimetric detection of bacteria in solution by simply adding relevant dyes is very 

common, but often requires instrumentation for the color analysis (Blake et al., 1984). On 

materials, on the other hand, the color is localized and with that more concentrated allowing for 

analysis by-eye and making the assays more portable (Anany, Chen, & Pelton, 2011; Pelton, 2009). 

Paper, an easy to modify and low-cost material, has been used to colorimetrically detect liver 

function enzymes and small molecules in blood, and bacteria contamination in food, beverages 

and water (Fiksdal, Pommepuy, Caprais, & Midttun, 1994; Hu, Wang, Wang, Pingguan-Murphy, 

Lu, & Xu, 2014; Jokerst, Adkins, Bisha, Mentele, Goodridge, & Henry, 2012; Lazcka, Del Campo, 

& Muñoz, 2007; Martinez, Phillips, Butte, & Whitesides, 2007; Nie et al., 2010; Rompré, Servais, 

Baudart, de-Roubin, Laurent, 2002; Vella et al., 2012; Yetisen, Akram, & Lowe, 2013). These 

assays focus on identifying specific bacteria in a matrix, by using reactive dyes interacting with 

enzymes present in only those bacteria (Adkins, Boehle, Friend, Chamberlain, Bisha, & Henry, 

2017).  

In this study, we used tetrazolium salts and nitrophenyl-phosphate to determine the 

metabolic state of E. coli and Salmonella Typhimurium on paper. Since the reactive dyes were not 

specific for the bacteria, we combined the assays with bacteriophages adsorbed on the paper to 
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capture only bacteria of interest. Bacteriophages adsorbed on materials or chemically bound to 

them have been used to capture E. coli and Salmonella before detection (Anany et al., 2011; 

Cademartiri, Anany, Gross, Bhayani, Griffiths, & Brook, 2010; Lakshmanan, Guntupalli, Hu, 

Kim, Petrenko, Barbaree, & Chin, 2007; Li, Chen, Horikawa, Shen, Simonian, & Chin, 2010; 

Wang, Sauvageau, & Elias, 2016). We used T4 bacteriophages for E. coli and P22 bacteriophages 

for Salmonella. Bacteria adsorbed on the paper or captured by immobilized bacteriophages were 

detected with iodophenyl-nitrophenyl-phenyl tetrazolium salt (INT) mixed with an electron 

transporter at neutral pH or nitrophenyl phosphate at alkaline pH. The assay at neutral pH was 

similar to those used for metabolically active bacteria in solution and showed a stronger purple 

color for metabolically active bacteria on paper (Berridge et al., 2005). The assay at alkaline pH, 

on the other hand, exhibited a stronger purple color for dormant bacteria. The colors were analyzed 

visually and quantified by image analysis allowing us to relate the color intensity to the metabolic 

state and concentration of E. coli and Salmonella on the paper.  

2.2 Materials and Methods 

2.2.1 Bacteria and Phage Cultures: Salmonella enterica subspecies enterica ser. Typhimurium 

(ATCC 19585) and Escherichia coli K12 (ATCC 25404) were purchased from the American Type 

Culture Collection (Manassas, VA), while environmental E. coli (E. coli LLV) were isolated from 

lake water (Lake LaVerne, Ames, IA) by plating the water on modified mTEC agar. Bacteria were 

propagated and enumerated (plate counts) using standard techniques with Luria Bertani (LB) broth 

and agar. Dormant bacteria were prepared by inoculating filtered autoclaved lake water (FALW) 

with 109 CFU/ml and storing the samples for 30 to 40 days at 4 ºC (Ozkanca & Flint, 1997). 

Dormant bacteria were enumerated using plate counts, before and after preparation in FALW. 

About 10% of these bacteria survived storage, which were classified as dormant. T4 (ATCC 
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11303-B4) and P22 (ATCC 19585-B1) bacteriophages were propagated and enumerated on 

overlays and stored in lambda buffer (100 mM NaCl, 16.6 mM MgSO4, 50 mM Tris-HCl buffer 

pH 7.5 and 0.01% w/v gelatin) (Clokie & Kropinski, 2009). 

2.2.2 Colorimetric Assays for Bacterial Enzymes on Paper: Colorimetric assays on Whatman® 

grade 3 filter papers were based on the reduction of tetrazolium salts or the hydrolysis of para-

nitro-phenyl-phosphate. To create reaction zones the paper was cut into circles with 38.5 mm2 

surface area, or wax rings with 5 mm diameter were printed with Xerox Color Qube 8570DN™ 

(Norwalk, CT) and melted through the paper (5-8 minutes at 85 °C) (Carrilho, Martinez, & 

Whitesides, 2009). The assays were performed by first adding 10 µl of the bacteria in phosphate 

buffered saline (PBS) at pH 7and 5 µl of assay solution to the paper. The assay solution for 

metabolically active bacteria was a freshly prepared solution with 0 to 2.5 mM 2-(4-iodophenyl)-

3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT), and 0 to 1 mM 5-methylphenazin-5-

ium methyl sulfate (PMS) in PBS at pH 7 (see Table S1 for detailed ratios). For dormant bacteria, 

we used a freshly prepared solution of 0 to 3 mM INT and 1 to 45 mM nitrophenyl phosphate 

(PNPP) in 0.5 mM Tris buffer at pH 10 (details in Table S2). Using 2.5 mM INT and 1 mM PMS, 

the above was repeated using combined mixtures of metabolically active and dormant Salmonella 

at 108 CFU/mL (100% active to 100% dormant bacteria). For all samples, the bacteria and assay 

reacted in minutes and were dried in the dark (one to four hours) before scanning (Canon LiDE 

110), while measurement of the color intensity occurred using ImageJTM (Vella et al., 2012). The 

color for INT/PMS mixtures was measured in the green channel while INT/PNPP mixtures were 

analyzed in the blue channel, since these led to the strongest differences at difference 

concentrations of bacteria. At least five replicates of each test were performed. 
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2.2.3 Immobilization of Bacteriophages and Capture of Bound Bacteria: Bacteriophages were 

immobilized on paper by adsorption. Single circles of Whatman® grade 3 filter papers were placed 

vertically inside a 96-well plate, and 200 µl of bacteriophage (1010 PFU ml-1) were added, 

completely covering the paper on both sides. After 48 hours at room temperature in the dark, the 

bacteriophage solution was removed and unreacted sites on the paper were blocked by immersing 

the papers in 200 µl of 1 w/v% bovine serum albumin (BSA) for one hour. The blocked papers 

were washed with 100 µl of PBS buffer before use. E. coli (103 – 107 CFU) or Salmonella (102 – 

106 CFU) were added and allowed to interact for five minutes at 37 ºC and shaking at 300 RPM. 

Unbound bacteria were removed by four washes with 100 µl of PBS buffer. The captured bacteria 

were analyzed as described above. Eight replicates were performed for each test.  

2.3 Results and Discussion 

2.3.1 Development of Colorimetric Assays: Each metabolic state required its own assay on 

paper. Oxidoreductases in metabolically active bacteria reacted with a tetrazolium salt at neutral 

pH, while in dormant bacteria, oxidoreductases and alkaline phosphatases reacted with a mixture 

of a tetrazolium salt and nitrophenyl phosphate at alkaline pH.  

2.3.2 Iodonitrotetrazolium Chloride for Metabolically Active E. coli on Paper: In solution, 

several tetrazolium salts change color in the presence of bacteria (Berridge et al., 2005). On paper, 

only iodophenyl-nitrophenyl-phenyl tetrazolium chloride (INT) showed a purple color in the 

presence of E. coli, while methyl-thiazolyl-diphenyl-tetrazolium bromide, and neotetrazolium 

chloride did not change color. INT developed color faster when combined methylphenazinium 

methyl sulfate (PMS), an electron transporter. Changing the concentrations and ratios of INT and 

PMS at constant E. coli (5*103 CFU/mm2) did not lead obvious trends in the developed color (Fig. 

1, Table S1). The darkest purple developed for the highest concentration of INT (2.5 mM) and 
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PMS (1 mM), while the second darkest purple was present at the lowest concentrations of INT 

(0.5 mM) and PMS (0.25 mM). Two other concentrations and ratios of INT and PMS (1.5 mM 

INT/0.5 mM PMS, and 2 mM INT/1 mM PMS) developed a weaker, but visible color. When 

images were analyzed digitally, the green component of the purple color exhibited the largest 

changes with concentrations of E. coli, and was used for quantitative analysis. At the highest 

concentration of INT and PMS, the green component of the color increased linearly with increasing 

concentrations of E. coli on the paper (Fig. 1), with a color change significant from background at 

5*103 CFU/mm2.  

Metabolically active bacteria developed a purple color while reacting with INT and PMS 

due to the reduction of the tetrazolium salt by oxidoreductases. While in solution, INT and PMS 

concentrations below the toxic level—1 mM for INT reacting in E. coli—are generally sufficient 

to detect metabolically active bacteria, on paper millimolar quantities five to forty times higher 

were needed (Hatzinger, Palmer, Smith, Peñarrieta, & Yoshinari, 2003; Ke et al., 2014; Smith & 

McFeters, 1997). The need for a higher concentration likely came from an interaction of INT and 

PMS with the paper. Both molecules are positively charged, while the paper is negatively charged. 

This charge difference could attract INT and PMS to the paper fibers preventing them from 

interacting with the bacteria. The higher concentration of INT in our assay likely determined which 

oxidoreductases were present in the bacteria. Only the lowest concentration of INT tested (0.5 

mM) was below the toxic level suggesting that oxidoreductases involved in normal cellular 

processes were mainly responsible for the color change. At higher concentrations of INT, 

oxidoreductases expressed in response to the toxic levels of dye could also be present, such as 

cytochrome oxidases (Ullrich, Karrasch, Hoppe, Jeskulke, & Mehrens, 1996). The amount of these 
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oxidoreductases depended on the concentration of INT as observed by an increase in the color with 

increasing concentration of INT above the toxic level (Fig 1).  

 

Figure 1. INT/PMS assay on paper detected metabolically active E. coli. (Panel a) Distinct ratios 
of INT and PMS produced different color intensity values on paper at the same concentration of 
E. coli. (Panel b) Different concentration of E. coli on paper detected by the assay with highest 
color intensity 2.5 mM INT and 1 mM PMS. The green component of the purple color was used 
for analysis. Error bars correspond to two standard errors (n=6). 

2.3.3 Para-nitrophenylphosphate and INT for Dormant E. coli on Paper: The detection of 

dormant bacteria was based on two classes of enzymes: oxidoreductases and alkaline phosphatases 

(ALP). These enzymes have been observed to be active in dormant bacteria. We used INT and 

para-nitrophenyl phosphate (PNPP) as substrates for these enzymes. PNPP is cleaved by ALP to 

produce yellow para-nitrophenol while INT is transformed to purple formazan by action of 
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oxidoreductases. Considering that para-nitrophenol was difficult to observe on the white paper, 

and taking advantage of the presence of both type of enzymes in dormant bacteria, we combined 

PNPP and INT substrates to detect simultaneously ALP and oxidoreductases activities. The 

combined substrate INT/PNPP led to a stronger purple color that was easier to distinguish on paper 

compared to these substrates alone. 

 

Figure 2. INT/PNPP assay on paper detected dormant E. coli. (Panel a) Distinct ratios of INT and 
PNPP produced different color intensity values on paper at the same concentration of E. coli. 
(Panel b) Different concentration of E. coli on paper detected by the assay with highest color 
intensity 3 mM INT and 45mM PNPP. The blue component of the purple color was used for 
analysis. Error bars correspond to two standard errors (n=6). 

For dormant E. coli at pH 10, the color of the assay increased with increasing concentration 

of INT (Fig. 2, Table S2), over a wider range of INT concentrations than at pH 7 due to an increased 

solubility of INT (3 mM versus 2.5 mM). Adding PNPP (10 to 45 mM) to a constant concentration 
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of INT (3 mM) led to an increase in color with increasing PNPP concentration as long as 5 mM of 

PNPP was present (Fig. 2a). The strongest color in the blue channel developed for the highest 

concentrations of INT/PNPP (3 mM/45 mM), which was used to measure to color intensity at 

different concentrations of dormant E. coli (Fig. 2b). There was a visible difference in color 

between 103 CFU/mm2 and 104 CFU/mm2 (Fig. S1), which led to a significant increase in the color 

intensity in the blue channel. PNPP likely reacted with alkaline phosphates in the periplasm, while 

INT reacted with oxidoreductases in cytosol and periplasm (Clegg et al., 2006; Ozkanca & Flint, 

1996; Yang & Metcalf, 2004). As with the assay for metabolically active bacteria, millimolar 

concentrations of INT were required for the darkest color changes. These higher concentrations 

suggest that some dye adsorbed on the paper and oxidoreductases present in dormant bacteria and 

those for detoxification reacted with the INT.  

2.3.4 Identifying the Metabolic States of Dormant E. coli and Salmonella Typhimurium on 

Paper: After developing assays for metabolically active and dormant E. coli, we tested both assays 

on metabolically active and dormant E. coli and Salmonella at different concentrations. At each 

concentration and metabolic state, the bacteria were analyzed on separate papers with mixtures of 

INT (2.5 mM) and PMS (1 mM) at a neutral pH (INT/PMS), or INT (3 mM) and PNPP (45 mM) 

at alkaline pH (INT/PNPP). Papers were dried completely before analysis (one to four hours), 

although a color change for the higher bacterial concentrations (5*105 CFU/mm2) occurred within 

five minutes. 

As expected, INT/PMS showed stronger color for metabolically active bacteria, while 

INT/PNPP exhibited stronger color for dormant bacteria (Fig. 3). The extent of the color difference 

depended on the bacterium and its concentration. The INT/PMS assay for metabolically active 



www.manaraa.com

53 
 

Salmonella showed a color different to the background at 5*105 CFU/mm2, while E. coli 

demonstrated a difference at 5*102 CFU/mm2.  

 

Figure 3. Identification of bacterial metabolisms by colorimetric assays on paper. (Panel a,c) 
Metabolically active cultures Salmonella Typhimurium (Panel a) and E. coli (Panel c) reacted 
with INT/PMS (closed triangles) and INT/PNPP (open triangles) solutions on paper. (Panel b,d) 
Dormant Salmonella Typhimurium (Panel b) and E. coli (Panel d) reacted with the INT/PMS 
(closed squares) and INT/PNPP (open squares) on paper. Reported concentrations are 38.5 times 
higher if expressed per paper. INT/PMS values: green component of the color, INT/PNPP values: 
blue component of the color. Error bars correspond to two standard errors (n=5). 

On the other hand, for dormant bacteria and the INT/PNPP assay, Salmonella changed 

color at 50 CFU/mm2, compared to 5*104 CFU/mm2 E. coli. The difference in color between the 
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assays for the same metabolic state was generally more distinct at higher concentrations of bacteria 

(Fig. 3), except for dormant Salmonella. For example, for 5*102 CFU/mm2 of metabolically active 

E. coli, the color for INT/PMS was 8% higher than for INT/PNPP, while at 5*105 CFU/mm2 it 

was 30% higher. The largest difference in color between INT/PMS and INT/PNPP was seen for 

dormant E. coli at 5*105 CFU/mm2, when INT/PNPP showed a 50% stronger color.  

Aside from the concentration of the dyes, the concentration and species of the bacteria 

influenced the color. In general, higher concentrations of bacteria led to stronger colors allowing 

a semi-quantitative measure for the concentration of E. coli and Salmonella at each metabolic state. 

For example, metabolically active E. coli reacting with INT/PMS developed a color at lower 

concentrations compared to dormant E. coli reacting with INT/PNPP (5*102 CFU/mm2 in Fig. 3c 

compared to 5*104 CFU/mm2 in Fig. 3d). The weaker color in dormant E. coli was likely due to 

fewer expressed oxidoreductases. When comparing dormant E. coli to dormant Salmonella the 

latter exhibited color change at lower concentrations (50 CFU/mm2 in Fig. 3b), suggesting more 

oxidoreductases in dormant Salmonella. At higher concentrations, the difference in color between 

the assays was generally more pronounced, making it easier to distinguish between metabolically 

active and dormant bacteria. High concentrations of bacteria switching from a dormant to a 

metabolically active state, for example, are associated with cyanobacterial blooms in 

environmental waters that can lead to the death of wildlife or are linked to failed bioethanol 

productions when dormant lactic acid bacteria revert to an active metabolic state during 

fermentation (Hallegraeff, 1993; Murphree et al., 2014). 

After establishing a relation between the color intensity of each assay, and the metabolic 

state and concentration of bacteria, we measured metabolically active Salmonella in a mixture with 

dormant Salmonella (100% active to 100% dormant) at constant bacteria concentration (108 
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CFU/mL). The mixtures on the papers were analyzed with INT/PMS (2.5 mM/1 mM). As 

expected, INT/PMS exhibited a darker color for mixtures with higher concentrations of 

metabolically active Salmonella. The color decreased linearly (R2 = 0.9997) with decreasing 

number of metabolically active until 25% of active Salmonella, which exhibited the same color as 

100% dormant Salmonella (Fig. 4). This linear decrease led to 8%, 14%, and 19% weaker color in 

the green channel from 100% active Salmonella to 25% active Salmonella. This difference in color 

was visible by eye (Fig. 4). This linear decrease in the color intensity allows the determination of 

the ratio of active and dormant bacteria in a mixture as long as the overall concentration is constant. 

For mixtures with different overall concentrations of bacteria, the color intensity, which also 

depends on the concentration of bacteria, will have to be normalized.  

 

Figure 4. INT/PMS assay on paper detected mixtures of metabolically active and dormant 
Salmonella at 108 CFU/mL. The green component of the purple color was used for analysis. Error 
bars correspond to two standard errors (n=5). Inserts: representative images of the color on paper. 
Diameter of the circles is 5 mm. 
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2.3.5 Detection of Dormant E. coli and Metabolically Active Salmonella After Capture by 

Bacteriophages on Paper: Detection of specific bacteria with the non-specific INT/PMS and 

INT/PNPP assays required specific capture of the bacteria to defined areas of the paper. We used 

bacteriophages adsorbed on the paper to achieve specificity. T4 bacteriophages were used for E. 

coli, while P22 bacteriophages were used for Salmonella. T4 bacteriophages were stable to 

washing losing about 20% of active bacteriophages. T4 bacteriophage adsorbed on filter paper 

bound dormant E. coli and changed color in the presence of INT/PNPP. Papers immersed for 48 

hours in the bacteriophage solution, showed the darkest purple with INT/PNPP after E. coli 

capture. A shorter time of adsorption reduced the color intensity, suggesting a lower number of 

captured bacteria. Washing the papers with the adsorbed T4 bacteriophages up to eight times 

before capturing the bacteria, did not reduce the color intensity of bound E. coli. The color only 

changed with the number of E. coli captured on the paper, with stronger colors for higher numbers 

of E. coli (Fig. 5). P22 bacteriophages adsorbed on paper captured metabolically active Salmonella 

that changed color with INT/PMS as low as 3 CFU/mm2.  

The developed assays were not specific for a given bacterium, but capturing specific 

bacteria with bacteriophages adsorbed on the paper allowed us to determine the metabolic state 

solely of the bacteria of interest. Even on unmodified paper a sufficient number of bacteriophage 

tails were available to capture their host bacteria. The unmodified paper, however, required a 

longer adsorption time compared to cellulose membranes with cationic charge (Anany et al., 

2011). This longer time was likely due to weaker attractive forces between the bacteriophages and 

the paper, which led to slower adsorption on the paper fibers. Once bacteriophages were adsorbed, 

they were stable to washing and able to capture their host bacteria. 
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Figure 5. Colorimetric detection of dormant E. coli bound to T4 bacteriophage on filter paper. 
(Panel a) Change in the blue component of the color depending on the number of washes with 
PBS after capture of dormant E. coli and before analysis with INT/PNPP (3.28/45 mM). Error bars 
correspond to two standard errors (n=8). (Panel b) Change in the blue component of the color 
depending on the concentration of dormant E. coli. E. coli were bound to bacteriophages and 
unbound bacteria were removed by four washes with PBS buffer before INT/PNPP (3.28/45 mM) 
solution was added. Error bars correspond to two standard errors (n=8). 

Dormant E. coli captured with T4 bacteriophages exhibited a higher limit of detection with 

the INT/PNPP assay compared to adsorbed E. coli (104 CFU/mm2 in Fig. 3d versus 106 CFU/mm2 

in Fig. 5b), while metabolically active Salmonella captured with P22 bacteriophages had a lower 
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limit of detection with the INT/PMS assay compared to adsorbed Salmonella. These differences 

in the limit of detection for papers with and without bacteriophages and for E. coli and Salmonella 

were likely due to differences in experimental protocols, the nature of the bacteriophages and their 

interactions with the bacteria. We did not wash papers with adsorbed bacteria to control the number 

of bacteria per paper for calibration and control, while we removed unbound bacteria, lowering 

their numbers before performing the assays. T4 and P22 bacteriophages belong to two different 

families, while T4 bacteriophages are a member of the myoviridae family and have a long 

contractile tail, P22 bacteriophages are a member of the podoviridae family with no tail. The long 

tail in the T4 bacteriophages was more sensitive to environmental factors and potentially denatured 

during the adsorption on the paper fibers. Bacteriophages also likely preferentially bound 

metabolically active bacteria as shown for Salmonella bacteriophages on gold surfaces (Fernandes 

et al., 2014).  

2.4 Conclusions 

Both beneficial and pathogenic bacteria can switch their metabolic states depending on 

their environment. Since these changes can alter their behavior and influence environmental and 

industrial processes, it is important to determine their metabolic state in a short time. In this study, 

we developed two paper-based assays that distinguished between metabolically active and dormant 

E. coli and Salmonella in water, and have the potential to be used with other bacteria, as they target 

classes of enzymes common in most bacteria. Compared to other paper-based assays for bacteria, 

our assays did not require bacterial lysis to release the oxidoreductases and alkaline phosphatases 

before reaction with the dyes, reducing the steps involved in the determination of the metabolic 

state of the bacteria (Jokerst et al., 2012). A drawback to not lysing the bacteria was the higher 

concentrations of E. coli and Salmonella required for the color change, as the dyes had to cross the 
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membrane of the bacteria before reacting with the enzymes. If the determination of the metabolic 

state of lower concentrations of bacteria is needed, our assay could be combined with chemical or 

biological lysis once the bacteria are immobilized on the paper.  

In summary, we developed two paper-based colorimetric assays to distinguish between 

metabolic states in E. coli and Salmonella. These assays are not specific to a certain bacterial strain, 

and adaptable to other bacterial species or cells containing oxidoreductases and alkaline 

phosphatases. Combining these non-specific assays with bacteriophages allowed us to determine 

the metabolic state of specific bacteria. Independent of the specificity, the assays were fast (< 30 

minutes), simple and low-cost, allowing a semi-quantitative determination of the concentration of 

bacteria at each metabolic state. The assays have the potential of being portable, which will allow 

the rapid determination of the metabolic state of bacteria, and with that can prevent negative 

environmental and industrial effects from rapid bacterial growth.  
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Abstract 
 

We have previously investigated the extraction and concentration of bacteria from model 

systems using magnetic ionic liquid (MIL) solvents, while retaining their viability. Here, we 

combine MIL-based sample preparation with isothermal amplification and detection of 

Salmonella-specific DNA using Recombinase Polymerase Amplification (RPA). After initial 

developmental work with Serratia marcescens in water, Salmonella Typhimurium ATCC 14028 

was inoculated in water, 2% milk, almond milk or liquid egg samples and extracted using one of 

two MILs, including: trihexyl(tetradecyl)phosphonium cobalt(II) hexafluoroacetylacetonate 

([P66614+][Co(hfacac)3–]) and trihexyl(tetradecyl)phosphonium nickel(II) 

hexafluoroacetylacetonate ([P66614+][Ni(hfacac)3–]). Viable cells were recovered from the MIL 

extraction phase after the addition of modified LB broth, followed by a 20 min isothermal RPA 

assay. Amplification was carried out using supersaturated sodium acetate heat packs and results 

compared to those using a conventional laboratory thermocycler set to a single temperature. 

Results were visualized using either gel electrophoresis or nucleic acid lateral flow immunoassay 

(NALFIA). The combined MIL-RPA approach enabled detection of Salmonella at levels as low 

as 103 CFU mL-1. MIL-based sample preparation required less than 5 min to capture and 

concentrate sufficient cells for detection using RPA, which (including NALFIA or gel-based 
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analysis) required approximately 30 - 45 min. Our results suggest the utility of MILs for the rapid 

extraction and concentration of pathogenic microorganisms in food samples, providing a means 

for physical enrichment that is compatible with downstream analysis using RPA. 

3.1 Introduction 

Salmonella  is a ubiquitous, Gram-negative bacterium that is widespread in the 

environment and is a contaminant in various foods, food ingredients, and in industrial food 

processing environments (Besser, 2018). Infection typically results from ingestion of tainted food 

products, including consumption of contaminated poultry, eggs and dairy products. The Centers 

for Disease Control and Prevention (CDC) estimates that nontyphoidal Salmonella  spp. are 

responsible for 1.2 million cases of illness, 19,000 hospitalizations and nearly 380 deaths in the 

United States annually, resulting in an economic burden greater than 3.4 billion USD (Hoffmann, 

Maculloch, & Batz, 2015). Therefore, rapid, streamlined and field-deployable methods for 

detection of Salmonella  spp. and other foodborne pathogens are crucial for ensuring the safety 

and quality of the foodstream.      

Current detection techniques used by the food industry include standard culture methods 

and polymerase chain reaction (PCR), due to the selectivity, reliability and regulatory acceptance 

of these techniques. However, culture-based methods for Salmonella  may require between several 

days to more than a week, depending on the sample (Brehm-Stecher, Young, Jaykus, & Tortorello, 

2009; US Department of Agriculture [USDA], 2009;). To address these time-to-result issues, the 

food industry relies PCR as a means for rapid screening of food samples for contamination. 

Although PCR has gained wide acceptance in the food industry over the past 20 years, the thermal 

cyclers needed for this approach can be expensive and most systems remain bench-bound or have 

limited portability (Brehm-Stecher & Johnson, 2007).     
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Recently, recombinase polymerase amplification (RPA) has demonstrated promise as an 

alternative means for the rapid detection of microbial pathogens and viruses (Murinda et al., 2014). 

Unlike PCR, which relies on high heat to denature and separate duplex DNA (dsDNA), RPA 

accomplishes this at lower temperatures using an enzyme, recombinase (Li & Macdonald, 2015). 

While RPA maintains several similarities to PCR, including exponential amplification of target 

sequences, a major difference between the two detection methods is the temperature profile used 

for amplification. RPA is an isothermal process, which obviates the need for a thermal cycler, 

allowing use of simple, small and inexpensive heating devices. The optimal temperature of RPA 

has been reported to be 37 – 42 °C, but amplification of specific products has been demonstrated 

at temperatures ranging from 25 – 45 °C (TwistDx, 2016). Suitable product amplification can be 

achieved in less than 20 min with RPA, as time-consuming ramping between separate denaturation, 

annealing and extension temperatures is not required (Kersting, Rausch, Bier, & von Nickisch-

Rosenegk, 2014). Together, these attributes make RPA advantageous for use in resource-poor 

environments.       

Although RPA products can be visualized using gel electrophoresis, gels require 

specialized equipment and are time-consuming, taking upwards of 35 min to get results. As an 

alternative, disposable, colorimetric lateral flow devices can be used for rapid (<10 min) amplicon 

detection. These paper- or nitrocellulose-based devices rely on capillary action and therefore have 

no requirement for power. Nucleic acid lateral flow immunoassays (NALFIA) like those used in 

this work with RPA are typically based on a sandwich-type assay (Posthuma-Trumpie, Korf, & 

van Amerongen, 2009). Like RPA itself, these NALFIA devices are portable, economical and 

simple to use outside of laboratory settings – characteristics that make them ideal for use in the 

field.      
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While nucleic acid amplification techniques are highly specific, their successful use in 

foods may be limited by low pathogen levels (Soo, 2013). Without a suitable means for capture, 

concentration and purification of bacteria prior to downstream analysis (“extraction” in purely 

chemical terms), the detection of pathogens in contaminated food samples may suffer from lack 

of reproducibility or from poor sensitivity due to inhibitory substances carried over from the 

sample matrix. Cultural enrichment is commonly used prior to detection, allowing dilution of food 

matrix-associated assay inhibitors, recovery of stressed or injured cells and generation of a 

detectable threshold of cells. However, key drawbacks include increased assay time, outgrowth of 

target organisms by competitive microflora and loss of information on initial pathogen load 

(Brehm-Stecher et al., 2009).    

While filtration- and centrifugation-based sample preparation techniques can enable 

physical enrichment of cells, clogging of filters or co-isolation of particles or debris that may 

interfere with  assay performance can be problematic (Soo, 2013). Magnetic techniques can also 

be used for capture, concentration and purification of cells from complex food matrices, including 

the use of magnetic microbeads or nanoparticle substrates functionalized with pathogen-specific 

antibodies. Other means for functionalizing substrates for cell capture include the use of cationic 

charge, which is non-selective, or those that depend on semi-selective cell-ligand interactions, such 

as lectins, antimicrobial peptides or antibiotics (Dao et al., 2018). In these approaches, 

functionalized magnetic beads or nanoparticles are dispersed throughout a sample slurry where 

they encounter and bind to bacteria. A magnetic field is then applied for physical isolation of the 

cell-enriched sorbent (Soo, 2013). Drawbacks to particulate magnetic sorbents such as microbeads 

may include aggregation, diffusion- or suspension-based limitations or poor access to microscopic 

physical niches where bacteria may be present. These issues may result in lower extraction 
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efficiencies and/or clogging of microfluidic systems. These problems can be addressed, but not 

completely avoided, through the use of functionalized nanoparticles (Soo, 2013). 

Magnetic ionic liquids (MILs) are paramagnetic molten salts comprised of 

organic/inorganic cations and anions that exhibit melting points at or below 100 °C. Similar to 

conventional ionic liquids (ILs), MILs possess negligible vapor pressures at ambient temperatures 

and tunable physicochemical properties including viscosity, solvent miscibility, and solvation 

capabilities (Clark, Nacham, Purslow, Pierson, & Anderson, 2016; Pierson et al., 2017; Santos, 

Albo, & Irabien, 2014). Owing to their tunable chemical structures and susceptibility to magnetic 

fields, MILs have been applied for the analysis of hormones in biological fluids acidic 

pharmaceuticals and endocrine disrupters, and the extraction and preservation of nucleic acids 

(Chatzimitakos, Binellas, Maidatsi, & Stalikas, 2016; Clark et al., 2015; Clark, Sorensen, Nacham, 

& Anderson, 2016; Merib, Spudeit, Corazza, Carasek, & Anderson, 2018). Very recently, MILs 

were also investigated as solvents for the preconcentration of viable bacteria for culture and PCR-

based detection (Clark, Purslow, Pierson, Nacham, & Anderson, 2017). By dispersing the 

hydrophobic MIL in an aqueous suspension of Escherichia coli K12, viable cells were rapidly 

extracted and concentrated for downstream analysis using qPCR. However, the ability of MIL 

solvents to extract industrially-relevant foodborne pathogens, such as Salmonella  Typhimurium, 

in complex food matrices was not tested. In this study, we report development of a method for the 

preconcentration and detection of S. Typhimurium that capitalizes on the rapid and cell-compatible 

extraction capabilities of MIL solvents and the portability, simplicity and rapidity of a RPA 

detection platform. 

 

 



www.manaraa.com

69 
 

3.2 Materials and Methods 

3.2.1 Magnetic Ionic Liquids: The structures of the three MIL solvents examined in this work are 

shown in Fig. 1, panel a. Synthesis and characterization of the MILs was performed as previously 

described (Pierson et al., 2017). MIL solvents were purified by liquid-liquid extraction with 

acetonitrile/hexane and dried in vacuo. MILs were kept for long-term storage in capped glass vials 

and MILs were stored in a dessicator for at least 24 h prior to use.  

3.2.2 Bacteria and Culture Conditions: Serratia marcescens (originally from Carolina 

Biological Supply Company, Burlington, NC, USA) was sourced from a teaching lab at Iowa State. 

Salmonella  enterica subspecies enterica ser. Typhimurium ATCC 14028 and Escherichia coli 

ATCC 25922 were from the American Type Culture Collection (ATCC, Manassas, VA, USA). 

Overnight cultures (10 mL) of S. marcescens were grown at 25 °C in 250 mL glass Erlenmeyer 

flasks containing Luria Bertani (LB) broth (Becton, Dickinson and Company [BD], Franklin 

Lakes, NJ, USA) supplemented with 1% (wt/vol) glycerol to accelerate production of the red 

pigment prodigiosion (Haddix et al., 2008). Flasks were incubated with shaking at 190 rpm in a 

Shel Lab Shaking Incubator (Sheldon Manufacturing, Inc., Cornelius, OR, USA). S. Typhimurium 

and E. coli were grown in 14 mL polystyrene round-bottom tubes (Corning Inc., Corning, NY, 

USA) containing 10 mL Tryptic Soy Broth (TSB) (BD), and incubated at 37 °C. Organisms were 

enumerated using Tryptic Soy Agar (TSA) plates (BD). 

3.2.3 Pasteurized Liquid Food Products: Two-percent milk (Hy-Vee Reduced Fat Milk), almond 

milk (Hy-Vee All Natural Original) and a liquid egg product (Hy-Vee 99% Real Egg) were 

purchased from a local grocery store (Hy-Vee, Ames, IA) for evaluation of MIL-based capture in 

liquid food products. All foods were evaluated before the “Sell by”, “Best if used by” or “Use by” 

dates listed on their packaging.  
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3.2.4 MIL-Based Extraction of Viable Bacteria: A representative schematic for the MIL-based 

extraction of bacteria is depicted in Fig. 1, panel b. A 1 mL aliquot of diluted cell suspension, 

artificially spiked milk, almond milk or liquid egg product was added to a 2 mL or 4 mL screw cap 

glass vial. A small volume of MIL (e.g., 15 µL) was added and vortexed vigorously for 30 s to 

create a cell-capturing microdroplet dispersion. With some samples (e.g. the egg product, due to 

viscosity and foaming), a magnet was applied externally to concentrate the cell-enriched MIL, 

although this step was not necessary with some samples, as the hydrophobic, denser-than-water 

MIL droplets were able to sink to the bottom of the extraction vial. After gravity-based deposition 

or magnetic extraction, the aqueous phase was then discarded and the MIL was subjected to a brief 

wash step using 1 mL of nuclease-free water (Integrated DNA Technologies, Coralville, IA, USA), 

to ensure adequate removal of residual bacteria that were not captured by the MIL microdroplets. 

Recovery of viable cells from the MIL extraction phase was achieved through a “back-extraction” 

step that involved vortexing the cell-enriched MIL in 1 mL or 200 µL of a nutritive medium 

comprised of tryptone (20 g/L; “2x tryptone”) and NaCl (10 g/L; “1x NaCl”) for 2 min. After back-

extraction, captured bacteria were detected using microbiological culture or RPA. Prior to RPA, 

the cell-enriched back-extraction media was heated at 100 °C for 10 min for cell lysis and release 

of target nucleic acids. The MIL-RPA method was compared to a commercial nucleic acid sample 

preparation approach using the PrepMan Ultra Sample Preparation Reagent (PMU; Life 

Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. 

3.2.5 Plating and Enumeration: Following back-extraction, aliquots of the cell-enriched 

modified LB media were serially diluted in 0.1% peptone water. A 10 µL aliquot of each dilution 

was applied to the appropriate lane on square, gridded TSA plates as described previously (Jett, 

Hatter, Huycke, & Gilmore, 1997). The track plates were then tilted to an angle of~80° for 15 min 
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to allow the deposited liquid to travel toward the opposite end of the plate. Plates were incubated 

for 48 h at 25 °C (S. marcescens) or for 24 h at 37 °C (S. Typhimurium). Colonies were manually 

counted for determination of the number of CFUs in each sample. The enrichment factor (EF) for 

the MIL-based method was calculated using Equation 1, where CMIL represents the concentration 

of bacteria in suspension following MIL-based extraction and CS is the concentration of bacteria 

in the initial sample. 

E" =
$%&'
$(

 (1) 

3.2.6 Recombinase Polymerase Amplification: RPA TwistAmp Basic and TwistFlow Salmonella 

were purchased from TwistDx (Cambridge, UK). RPA was carried out according to the 

manufacturer’s instructions and results were visualized using either gel electrophoresis (TwistAmp 

Basic kit) or a chromatographic lateral flow assay (TwistFlow Salmonella  kit). Using the 

TwistAmp Basic kit, a 340 bp region of the putative dienelactone hydrolase gene (DLH) was 

amplified using the following primers: (Forward primer) 5’-GCC GGG CAG CRA TTA TTC TGC 

ATG AA-3’and (Reverse primer) 5’-TGG CGT ATA CGG GAA CCG TAA TAG CA-3’. An in 

silico analysis of this primer set using the Primer-Blast tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi)  indicated that within the Salmonella  

enterica I database (NCBI taxonomy ID: 59201), the primer set matched several subspecies I 

serotypes, including the top three disease-causing serotypes identified in the most recent Centers 

for Disease Control and Prevention (CDC) Salmonella  Surveillance Report (CDC, 2018b; Ye et 

al., 2012).  These include S. Enteritidis (225 hits within the S. enterica I database), S. Typhimurium 

(57 hits) and S. Newport (21 hits). Because the Primer-Blast software does not accommodate 

degenerate bases (the DLH primer set contains an “R”, which indicates either an “A” or a “G” in 

this position), it is expected that additional Salmonella  serovars will be detected with this primer 



www.manaraa.com

72 
 

set. An invA target, using primers described by Liu et al. was also investigated for use in gel 

electrophoresis-based experiments (Liu, Zang, Du, Li, & Wang, 2017). For both assays, primers 

were diluted with nuclease free water from a 100 µM stock of mixed primers to a working 

concentration of 10 µM. Because the DLH primer set resulted in higher amplicon production, it 

was used in subsequent experiments.        

For the TwistFlow Salmonella  kit (also targeting the invA gene), a master mix containing 

primer in rehydration buffer and nuclease-free water was prepared. Sample DNA was obtained 

from the MIL back-extraction, or using the PMU approach as per manufacturer’s instructions. For 

each kit, master mix, plus 1 µL of sample DNA was added to the lyophilized RPA reagents 

contained in a PCR tube, where the entire volume was mixed using a pipette. Following this, 2.5 

µL of 280 mM magnesium acetate was added to initiate amplification. Sample tubes were inverted 

vigorously 10 times, vortexed for 10 s, followed by centrifugation for 5 s to draw the sample to 

the base of the tube. This mixing process was repeated after 4 min of incubation, and after 

completion of incubation. For both the TwistAmp Basic and TwistFlow Salmonella  kits, reactions 

were incubated using a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA) 

at 40 °C for 20 min. S. Typhimurium was tested for each RPA kit, with E. coli serving as a negative 

control. 

3.2.7 Gel Electrophoresis: After heating, RPA products generated using the TwistAmp Basic kit 

were mixed with 10 µL of 6X bromophenol blue/xylene cyanol FF loading dye and loaded on a 

1% agarose gel stained with either SYBR Safe DNA Gel Stain (Thermo Fisher Scientific) or 

GelRed (Biotium, Fremont, CA, USA). Using 1X TBE as the running buffer, samples were 

electrophoresed using a Mupid-2Plus Submarine Electrophoresis System (Mupid Co., Ltd., Tokyo, 

JP), for 35 min at 100 V. Bands were visualized using either a Safe Imager 2.0 Blue Light 
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Transilluminator (Thermo Fisher Scientific), or an Azure Biosystems c300 imaging system (Azure 

Biosystems, Dublin, CA, USA) at 302 nm with a 20 s exposure time. 

3.2.8 Lateral Flow Assay: Single-tube amplification products generated using the TwistFlow 

Salmonella  kit were added directly to a nucleic acid lateral flow immunoassay (NALFIA) 

disposable cartridge (Ustar Biotechnologies (Hangzhou) Ltd., Hangzhou, CN). The NALFIA relies 

on visual detection of a test band facilitated by the extension of biotin and 6-carboxyfluorescein 

(6-FAM) labeled primers during RPA. The amplification product is visible by eye as a result of 

aggregation of streptavidin-conjugated gold nanoparticles, which bind to the biotin-labeled 5’ end 

of the double-stranded amplicon. The terminal 6-FAM group of the amplicon is also selectively 

captured by the anti-FAM antibody, which is embedded in the test line on the lateral flow strip. A 

control line consisting of biotin-conjugated BSA exhibits strong affinity for any remaining 

streptavidin-conjugated gold nanoparticles and can be visualized for a valid assay. Generation of 

a red band at the test position indicates successful amplification of the double-stranded product, 

sandwiched between the bound anti-FAM antibody and the streptavidin-conjugated gold 

nanoparticles. A positive result was recorded if both the control and test bands were identified 

within 10 min, whereas detection of only the control band indicated a negative result.  

3.3 Results and Discussion 

3.3.1 Improved MIL Extraction Conditions for Gram-Negative Bacteria: To begin our 

investigation of the MIL capture process for bacteria other than the previously-reported E. coli K-

12, we selected the non-pathogenic Serratia marcescens. S. marcescens, a Gram-negative 

bacterium in the same family as Salmonella, produces the reddish-orange pigment prodigiosin, 

allowing its unambiguous visual detection when concentrated and facilitating its use as a model 

Gram-negative bacterium in development of pre-analytical sample preparation methods 
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(Rossmanith, Frühwirth, Süss, Schopf, & Wagner, 2010). Since the chemical structure of the MIL 

has profound implications on its extraction behavior, three MILs were studied for bacterial 

extraction (Fig. 1a). By vigorously dispersing a small volume of MIL (e.g., 15 µL) in an aqueous 

suspension of S. marcescens (1×103 CFU mL−1), cells were extracted into the resulting MIL 

microdroplets and cell-enriched microdroplets were harvested based on either MIL density (~1.3 

g mL-1 for the Ni(II) MIL) or through manipulation with an external magnetic field (Fig. 1b) (Clark 

et al., 2015; Trujillo-Rodríguez et al., 2016). 

 

Figure 1. (Panel a) Structures of MILs evaluated in this study; (Panel b) Schematic for the 
extraction and preconcentration of Salmonella Typhimurium from aqueous samples, followed by 
downstream analysis using RPA amplification and microbiological culture detection methods. 
Panel b adapted from Clark et al., 2017.  

After the cell-enriched MIL was rinsed with deionized water, bacteria were recovered from 

the extraction phase using Luria Bertani nutrient broth (LB, per L: 10 g tryptone, 5 g yeast extract, 

10 g NaCl), plated, and incubated at 25 °C for 48 h prior to enumeration. Of the three MILs studied, 
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the Ni(II) and Co(II) MILs yielded comparable colony forming units (CFUs), whereas no growth 

was detected after extraction using the Dy(III) MIL (Fig. 2, inset). Despite possessing identical 

cation moieties ([P66614+]) and ligands (hfacac), the extraction of S. marcescens by MILs strongly 

depended on the identity of the metal component. This phenomenon has also been observed when 

using similar MIL solvents for the preconcentration of nucleic acids from aqueous solution 

(Emaus, Clark, Hinners, & Anderson, 2018).      

To maximize the recovery of viable bacteria from the MIL extraction phase, several LB-

based back-extraction media varying in ionic strength and nutrient composition were investigated 

(Fig. 2). For these experiments, suspensions of S. marcescens (1×103 CFU mL−1, in 1 mL 0.1% 

peptone) were vortexed for 30 s with 15 µL of the Co(II) MIL, then resuspended for a 2 min back-

extraction into 1 mL of either water (control), LB medium or 7 variations of the basic LB medium 

recipe. Back-extraction using deionized water resulted in the lowest quantity of bacteria recovered 

from the MIL while the greatest quantity of cells was obtained with a nutrient-rich tryptone 

medium supplemented with NaCl (2x T, 1x NaCl, Fig. 2). Back-extracted samples were diluted 

100-fold prior to plating to ensure that countable dilutions within the statistically valid range of 25 

– 250 CFU were obtained. Our results show that S. marcescens cells were physically enriched by 

the MIL to levels between 5 and 6 times higher than their initial concentration. Apart from the 

higher ionic strength of the best back-extraction media, which has previously been shown to assist 

in the recovery of Gram-negative bacteria, it is conceivable that the hydrophobic MIL solvent 

imposes stress on the cell in a process that is attenuated by transferring the bacteria to a supportive 

nutrient media (Bhaganna et al., 2010; Clark et al., 2017). Because the 2x T, 1x NaCl back-

extraction medium provided the highest recoveries for S. marcescens, it was selected for use in 

subsequent experiments. 
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Figure 2. Recovery of S. marcescens extracted with Co(II) MIL as a function of back-
extraction medium composition. Percentage of initial cell load recovered from the Co(II) MIL 
extractant using aqueous back-extraction media of different ionic composition is shown. A 
suspension of S. marcescens was prepared and captured with the Co(II) MIL as described in the 
text, then back-extracted into water (control), LB medium or 7 variations of the basic LB medium 
recipe. Back-extraction media used: 1X YE (5 g L-1 yeast extract); 2x YE (10 g L-1 yeast extract); 
1x T (10 g L-1 tryptone); 2x T (20 g L-1 tryptone); 1x T, 1x YE (10 g L-1 tryptone, 5 g L-1 yeast 
extract); 2x T, 2x YE (20 g L-1 tryptone, 10 g L-1 yeast extract); 2x T, 1x NaCl (20 g L-1 tryptone, 
10 g L-1 NaCl). Average cell recoveries for three separate experiments are shown. Inset: 
Representative cell growth on track plates obtained following the extraction of S. marcescens using 
Ni(II), Co(II) and Dy(III) MILs.  

Next, we investigated our MIL-based method for the preconcentration of S. Typhimurium, 

using the 2x T, 1x NaCl back-extraction medium. As with S. marcescens, similar recoveries of 

viable Salmonella  were observed for the Ni(II) and Co(II) MILs, resulting in enrichment factors 

of approximately 12, which is comparable to previous enrichment factors for the MIL-based 

extraction of E. coli (Clark et al., 2017). The work reported here represents the first use of MILs 

as solvents for the preconcentration of viable pathogenic bacteria from aqueous suspensions. 

Because Ni(II) and Co(II) results were similar, subsequent experiments toward coupling MIL-
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based bacterial extraction with molecular detection using RPA were performed using the [P66614+] 

[Ni(hfacac)3-] MIL. 

3.3.2 Combining MIL-based Extraction with Salmonella-Targeted RPA: In an effort to 

identify improved approaches for food analysis, we investigated the feasibility of coupling our 

MIL-based method for capture and concentration of S. Typhimurium from aqueous media with the 

speed and simplicity of RPA analysis. Briefly, after preconcentration and recovery of S. 

Typhimurium from an aqueous sample using the Ni(II) MIL, the back-extraction suspension was 

heated for 10 min at 100 °C to lyse the bacteria and release their nucleic acids for downstream 

RPA analysis. Initially, we compared two primer sets for the amplification of nucleic acids from S. 

Typhimurium: primers described by Liu et al. targeting the invA gene, which codes for a protein 

involved in invasion of host intestinal epithelia by Salmonella, and primers identified via 

comparative genomic analysis and amplifying a 340 bp region of a putative dienelactone hydrolase 

gene (DLH, this study) (Liu et al., 2017). Although both primer sets successfully amplified DNA 

from the bacteria recovered from the MIL phase, gel electrophoresis results demonstrated that the 

DLH-targeted primers yielded bands with higher fluorescence intensities (Fig. S1). As a control, 

E. coli ATCC 25922 (105 CFU mL-1) was extracted using the Ni(II) MIL, lysed and examined via 

DLH-based RPA. No amplicon was detected, indicating good selectivity of the DLH primers for 

Salmonella (Fig. S1). 

3.3.3 Evaluating Use of a Power-free Heat Source for Salmonella -Targeted RPA: A major 

limitation of many nucleic acid amplification methodologies is their reliance on electricity to 

power a heat source such as a thermal cycler in PCR or a heat block for isothermal methods. In an 

effort to circumvent this limitation, we examined supersaturated sodium acetate heat packs - a 
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small, portable consumer-grade novelty product used in handwarmers and earmuffs (Cristalheat, 

www.xUmp.com) - as a power-free means for driving RPA.  

 

Figure 3. Evaluation of sodium acetate heat pack for power-free incubation of RPA 
reactions. In order to assess the utility of sodium acetate heat packs (inset) for portable and power-
free incubation of RPA reactions, we measured the internal temperature of a template-free RPA 
reaction tube sandwiched between two activated heat packs using a fiber optic temperature 
monitoring system as described in the text. Lefthand panel: Sodium acetate heat packs were able 
to provide near-optimal RPA reaction temperatures (reported range, 37 °C – 42 °C) over typical 
amplification times. Temperatures at various points along the time-temperature curve are 25.2 °C 
(initial temperature, point a), 45.4 °C (point b), 43.7 °C (point c) and 42.1 °C (point d). Righthand 
panel: Comparison of DLH-RPA reactions driven with a thermal cycler (TC) or with sodium 
acetate heat packs (SA), using bacterial DNA obtained using the PrepMan Ultra Sample 
Preparation Reagent (PMU) or via MIL-based extraction (MIL). 

In initial work, we measured the internal temperature of a template-free RPA reaction tube 

sandwiched between two activated heat packs using an OPTOCON FOTEMP1-4 fiber optic 

temperature monitoring system (Optocon AG, Dresden, Germany). Data were collected using the 

FOTEMP Assistant software, exported to Microsoft Excel and plotted in Prism graphing software 

(Prism 7 for Mac OS X, v. 7.0d, GraphPad Software, La Jolla, CA) (Fig. 3).  The temperature of 

the RPA mixture increased rapidly after heat pack activation, reached equilibrium between 42 °C 
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and 44 °C (Fig. 3a) and remained within optimal RPA temperature range for up to 40 min. We then 

tested the performance of heat pack-driven RPA using the DLH primer set and MIL-extracted S. 

Typhimurium. Intense amplicon bands were seen for sodium acetate-driven DLH-RPA with DNA 

isolated using either the PrepMan Ultra Sample Preparation Reagent (PMU-SA) or with MIL-

extracted cells (MIL-SA) (Fig. 3b). Although a band was seen with the sodium acetate-heated no-

template control (NTC-SA), it is expected that use of lateral flow-based detection would enable 

differentiation of legitimate amplicons from spurious NTC bands sometimes seen on agarose gels 

with RPA (Bentahir, Ambroise, Delcorps, Pilo, & Gala, 2018; Rohrman & Richards-Kortum, 

2012). These results highlight the utility of sodium acetate heat packs as a viable, power-free means 

for amplifying nucleic acids from microbial pathogens using RPA.  

3.3.4 Comparison of Methods for Amplicon Detection, Further Improvement of MIL 

Approach: All elements of a detection assay (cell capture, release of nucleic acids, amplification 

of target DNA and product detection) may impact the quality of the final result. With this in mind, 

we evaluated different methods for nucleic acid release in conjunction with further improvement 

of the MIL-based workflow (larger sample vial size, smaller back-extraction volume) and two 

approaches for amplicon detection (gel electrophoresis, nucleic acid lateral flow immunoassay 

[NALFIA]). For direct comparison of methods for release of nucleic acids prior to RPA, we 

compared heating of the cell-enriched MIL to 100°C (with modifications, as described below) with 

use the commercial reagent PMU. For both approaches, aqueous samples were inoculated with S. 

Typhimurium at concentrations ranging from 103 to 106 CFU mL-1, followed by DLH-targeted 

RPA.      

The PMU method was used according to the manufacturer’s instructions. Briefly, cells 

from a liquid suspension were lysed in 200 µL of PMU reagent, followed by heating (15 min, 
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100°C) and centrifugation to separate cellular debris from the DNA-containing supernatant. The 

PMU method facilitated consistent detection down to 104 CFU mL-1, while detection at lower 

levels was inconsistent (Fig. 4 gel image, lane 1).  

 

Figure 4. MIL-RPA with Ni(II) MIL. The combined MIL and RPA approach was visualized 
using gel electrophoresis (35 min) or lateral flow (10 min). MIL-based extraction was compared 
with concurrent extraction using PrepMan Ultra Sample Preparation Reagent (PMU). For gel 
electrophoresis (lefthand panel), PMU LOD was consistently identified as 104 CFU mL-1, 
however, bands were inconsistently present at lower levels (lane 1), or were less defined  than 
those for the Ni(II) MIL at the same level (lane 3). Lanes 4, 5 represent no template controls (NTC). 
With lateral flow (right-hand panel) detection was achieved as low as 104 CFU mL-1 for both 
PMU (strip 1) and the MIL (strip 2).  

PMU was not evaluated for lysis of MIL-captured cells, as this would have introduced additional 

assay elements, namely use of a chemical lysis reagent and a centrifugation step. Based on 

observations of liquid behavior during vortexing, we hypothesized that slight modifications to our 

established MIL-RPA approach might result in process improvements. By decreasing the sample 



www.manaraa.com

81 
 

vial size from 4 mL to 2 mL and decreasing the back-extraction volume from 1 mL to 200 µL, we 

found we could lower our detection limit to 103 CFU mL-1, presumably due to enhanced contact 

between the MIL and back extraction solution when a smaller sample vial was used and the 

increased concentration of bacteria in the smaller back-extraction volume (Fig. 4 gel image, lane 

3). These slight modifications enabled us to improve the sensitivity of our streamlined “capture, 

concentrate, heat and amplify” MIL-RPA process, without the addition of further assay elements. 

Without these process modifications, the limit of detection for our MIL-RPA approach was 104 

CFU mL-1 for gel electrophoresis-based visualization of Salmonella  DLH amplicons.  

Because conventional gel electrophoresis is inherently laboratory-bound and time 

consuming, we sought to evaluate the use of a rapid, portable alternative for amplicon detection. 

Due to its simplicity and portability, NALFIA is often used in resource-limited environments, or 

in non-laboratory settings, as it does not require electricity or laboratory equipment. Using the 

Ni(II) MIL for preconcentration and extraction of aqueous samples of S. Typhimurium at 

concentrations ranging from 103 to 106 CFU mL-1, RPA was carried out using the TwistFlow 

Salmonella  kit from TwistDx (Posthuma-Trumpie et al., 2009). Test results were determined using 

a 5 min NALFIA step. Initially, the combined MIL-RPA-NALFIA approach facilitated detection 

at levels as low as 105 CFU mL-1. Since the detection limits using NALFIA were 2 log higher than 

with gel electrophoresis, we investigated whether metal ions released from the hydrophobic MIL 

phase (e.g., Ni2+) during back-extraction had any influence on the outcome of the NALFIA step 

(Emaus et al., 2018). For these experiments, PMU samples were spiked with levels of NiCl2 

ranging from 0.2 mM to 2 mM. Visible control and test bands were observed for all NiCl2 samples, 

suggesting that Ni2+ potentially released from the MIL did not inhibit the NALFIA. It is important 

to note that the NALFIA targets the invA gene, using primers and conditions developed by the 
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manufacturer. Our choice of the dienelactone hydrolase gene target for the gel electrophoresis 

experiments may also have contributed to differences in observed detection limits due to 

differences in amplification efficiency between the two primer sets. In order to improve detection 

limits, the back-extraction volume was decreased to 200 µL, resulting in detection limits for S. 

Typhimurium as low as 103 CFU mL-1 with the Ni(II) MIL (Fig. 4). The PMU method provided 

detection of Salmonella  at levels as low as 104 CFU mL-1 (Fig. 4), but once again requires the use 

of a benchtop centrifuge that is incompatible with pathogen analysis in the field or in resource 

limited settings. 

3.3.5 MIL-RPA for detection of Salmonella  in Liquid Food Samples: In order to examine the 

application of the combined MIL-RPA method in a practical setting, it was applied for the detection 

of S. Typhimurium in food samples including milk (2% milk fat) and almond milk. S. Typhimurium 

cells were inoculated into 1 mL samples at 105 CFU mL-1 and extracted using the Ni(II) MIL under 

improved conditions. The combined approach enabled detection of S. Typhimurium at 105 CFU 

mL-1 (Fig. 5a). The PMU method did not consistently detect S. Typhimurium in spiked 2% milk 

samples. To explore whether dilution of samples (and of potentially interfering substances such as 

fats and proteins) might lead to improvements in both PMU and MIL samples, samples were 

diluted with 0.1% peptone water (PW) in some experiments. Interestingly, and for unknown 

reasons, PW appeared to reduce the efficacy of both PMU extraction of cell DNA and MIL-based 

cell capture, with the diluted MIL sample not yielding a detectable band (Fig 5a, lane 6). These 

results suggest examination of alternate diluents (i.e. molecular-grade water) in future experiments 

to explore whether such inhibition may be avoided and if a more appropriate dilution medium may 

represent a viable approach for reducing sample complexity, if needed.  Because Salmonella  spp. 

have been especially problematic in eggs, with large outbreaks occurring in 2010 (almost a half a 
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billion eggs recalled) and 2018 (almost 207 million eggs recalled), the MIL-based preconcentration 

method was applied to liquid egg samples spiked with concentrations of S. Typhimurium ranging 

from 103 to 105 CFU mL-1 (Allard et al., 2013; CDC, 2018a).  

 

Figure 5. RPA-based detection of Salmonella Typhimurium in liquid food products. The 
combined MIL and RPA approach was applied to almond milk, milk (2% milk fat), 50:50 dilution 
of milk (2% milk fat: 0.1% peptone water) and liquid egg product. Results were visualized using 
gel electrophoresis (35 min) or lateral flow (10 min). MIL-based extraction was compared with 
concurrent extraction using PrepMan Ultra Sample Preparation Reagent (PMU). For Salmonella-
spiked almond milk (Panel a, lanes 1, 4), milk (2% milk fat) (Panel a, lanes 2, 5) and 50:50 milk 
dilution samples (Panel a, lanes 3, 6) using gel electrophoresis and either extraction method (PMU 
or MIL), detection was achieved at 105 CFU mL-1. For liquid egg samples spiked with S. 
Typhimurium (Panel b), PMU and MIL LOD was 104 CFU mL-1 (Panel b, lanes 3, 4). Using 
lateral flow (Panel c), for Salmonella-spiked liquid egg samples, LOD was identified 104 CFU 
mL-1 for both PMU (Panel c, 3, 4) and MIL-extracted samples (Panel c, 5, 6). Strips 1 and 2 are 
the no template control (NTC) and internal control, respectively. 
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The foamy nature of the liquid egg sample initially caused challenges in recovering a 

sufficient volume of MIL for downstream detection bacteria. However, ~1 min exposure of the 

sample to a 0.66 T rod magnet to the base of the 2 mL glass vial facilitated collection of the cell-

enriched MIL solvent, enabling detection limits as low as 104 CFU mL-1 (Fig. 5b). The commercial 

PMU method was concurrently compared to the MIL-based approach and exhibited an identical 

detection limit using RPA and gel electrophoresis. However, the PMU method resulted in less 

intense bands than those from the MIL-based extraction method (Fig. 5b). The Ni(II) MIL was 

also applied for preconcentration of S. Typhimurium in liquid egg samples coupled to RPA and 

NALFIA readout. The combined MIL-RPA-NALFIA approach facilitated detection at levels as 

low as 104 CFU mL-1 in inoculated liquid egg samples. Once again, this method was concurrently 

compared with the use of PMU, which maintained similar detection levels (Fig. 5c) but required a 

centrifugation step that is not compatible with field sampling or on-site analysis. 

3.4 Conclusions 

We report further improvement of our previously described method for capture of Gram-

negative bacteria and the first use of this approach for capture and concentration of a human 

pathogen from aqueous suspensions, including at-risk foods. Post-capture growth on non-selective 

media suggested a lack of cytotoxicity with this approach. We coupled capture and concentration 

of S. Typhimurium to RPA, a rapid isothermal method for DNA amplification, and found that we 

could drive RPA reactions using inexpensive and regenerable sodium acetate heat packs, 

eliminating the need for an external power source. Salmonella  RPA amplicons could be detected 

in <10 min using a simple chromatographic readout. Our approach is simple, streamlined and 

amenable to analyses in the field or in other resource-limited environments.    
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Apart from their magnetic properties, the MILs used here have other advantageous 

characteristics useful for the analysis of aqueous foods or food suspensions. Unlike other recently 

reported MILs, which have reported room temperature densities that are on par with that of water, 

the Ni(II) and Co(II) MILs used here had densities of ~1.3 g mL-1, which lie between the densities 

of glycerol (1.26 g mL-1) and corn syrup (~1.4 g mL-1) (Santos, Albo, Rosatella, Afonso, & Irabien, 

2014). Because the MILs used in this study are both hydrophobic and denser than water, they are 

well-suited for analysis of aqueous solutions such as liquid foods or food suspensions, and can be 

collected through either simple density-based sedimentation or with application of an external 

magnet. For automated and high-throughput applications in the food industry, it is possible that 

use of a strong electromagnet for post-extraction collection of MILs could result in fast and 

uniform capture of cell-enriched MILs. It may also be possible to minimize the costs and 

environmental impacts of high-throughput use of MILs in food testing by developing methods 

capable of recycling MILs for multiple rounds of cell capture.   

The approach described here bridges the disciplines of food science, materials science and 

chemistry, providing new tools for rapid and efficient extraction of viable cells in support of 

pathogen detection efforts. Future work will focus on extending MIL-RPA to additional foodborne 

pathogens, including the Gram-positive pathogen Listeria monocytogenes and assessment of any 

negative impacts that MIL-based capture may have on bacterial physiology, such as injury or 

antimicrobial activity, with the development of approaches for mitigation of these impacts, should 

they occur. 
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CHAPTER 4 

MAGNETIC IONIC LIQUID-BACTERIAL INTERACTIONS: CAPTURE AND 
RECOVERY OF SALMONELLA SPP. AND ESCHERICHIA COLI O157:H7 

 
Stephanie A. Hice, Marcelino Varona, Jared L. Anderson, and Byron F. Brehm-Stecher 

 
 

Abstract 

The rapid and sensitive detection of bacterial pathogens is critical for the prevention of 

outbreaks associated with foods. Traditional culture-based detection is slow and provides long 

sample-to-answer times.  Magnetic ionic liquids (MILs) have been previously demonstrated as 

novel extractants for Salmonella Typhimurium from a variety of food matrices. In this study, the 

extraction and recovery behavior of nine Salmonella serotypes (including a “deep rough” strain) 

and eight E. coli O157:H7 strains was examined for one MIL solvent. Potential cytotoxic effects 

of trihexyl(tetradecyl) phosphonium nickel(II) hexafluoroacetylacetonate ([P66614+][Ni(hfacac)3-]) 

and trihexyl(tetradecyl) phosphonium dysprosium(III) hexafluoroacetylacetonate 

([P66614+][Dy(hfacac)4-]) MILs  were examined by parallel plating on non-selective and selective 

media. Using selective media, we have determined that no detectable impacts on post-capture 

bacterial growth can be attributed to the ([P66614+][Ni(hfacac)3-]) MIL. Insight was gained into the 

previously observed antimicrobial effects of the ([P66614+][Dy(hfacac)4-]) MIL by investigating the 

metal and anion-complex on the growth of cells using selective media. This work suggests the 

broader applicability of MIL-based extractions and explores the physiological impact of the MILs 

on select foodborne pathogens. 

4.1 Introduction 

Salmonella is a ubiquitous, Gram-negative genus of bacteria that is widespread in the 

environment, and can be found in many different foods, food ingredients and in industrial food 
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processing environments (El-Gazzar & Marth, 1992). Infection typically results from ingestion of 

tainted food products, including consumption of contaminated poultry, eggs and dairy products 

(Kim & Lee, 2016). The Centers for Disease Control and Prevention (CDC) estimates that 

nontyphoidal Salmonella serotypes are annually responsible for 1.2 million cases of illness, 19,000 

hospitalizations and nearly 380 deaths in the United States (Centers for Disease Control and 

Prevention [CDC], 2019a; Hoffman, Maculloch, & Batz, 2015). The resulting economic burden, 

attributed to the number of annual illnesses and their severity, is $3.4 billion USD (Hoffman et al., 

2015). Escherichia coli is a Gram-negative rod-shaped bacterium that exists as part of the normal 

flora of the intestinal tract in humans and some animals (Meng, Feng, & Doyle, 2001). Shiga toxin-

producing E. coli (STEC), such as E. coli O157:H7, are clinically significant, and result in 

hemorrhagic colitis (HC), hemolytic uremic syndrome (HUS), and a 46.2% hospitalization rate 

(Hoffman et al., 2015; Lim, Yoon, & Hovde, 2010). HUS affects approximately 5–10% of 

individuals diagnosed with STEC infection (CDC, 2019b). In the United States, E. coli O157:H7 

is responsible for 63,000 illnesses, 2,200 hospitalizations and an estimated 20 deaths, annually 

(Lim et al., 2010). The economic burden attributed to E. coli O157 is approximately $271 million 

USD per year (Hoffman et al., 2015). As a result, the detection of various Salmonella serotypes, 

E. coli O157:H7 and other foodborne pathogens is crucial for public health, while ensuring safe 

processing of foods. Access to rapid and accurate methods for identification of foodborne 

pathogens in agricultural and industrial environments will lead to improvements in outbreak 

traceability. 

 Due to low levels of bacterial contamination in foods, current detection methods employed 

in industrial environments rely on the use of pre-enrichment, enrichment and purification 

techniques prior to downstream analysis. Multi-pathogen enrichment media is well-characterized 
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and widely available (Garrido et al., 2013; Kim & Bhunia, 2008). When sampling from foods and 

in manufacturing environments, selective enrichment media is requisite, as it facilitates enrichment 

of bacterial targets while aiding in recovery of sub-lethal cellular damage (Suo & Wang, 2013; 

Wu, 2008). Use of enrichment media, however, adds time-to-result, consequentially delaying 

detection efforts. Additional approaches to purification and preconcentration of bacterial targets 

relies of centrifugation and filtration, which are non-selective and may lead to false-positive or 

false-negative results. To circumvent this, magnetic separation technologies can be applied to 

facilitate rapid preconcentration and isolation of bacteria. When added to a sample suspension, 

functionalized magnetoactive substrates rapidly preconcentrate and extract bacterial targets when 

an external magnetic field is applied (Clark, Purslow, Pierson, Nacham, & Anderson, 2017a; Entis 

et al., 2001; Hice, Clark, Anderson, & Brehm-Stecher, 2019). While selectivity is achieved, 

functionalized magnetic beads suffer from diminished extraction efficiencies due to settling and 

aggregation, while use of antibodies results in instability and increased cost (Clark, Varona, & 

Anderson, 2017b; Hice et al., 2019).  

 Magnetic ionic liquids (MILs) are magnetoactive solvents consisting of organic/inorganic 

cations and anions. A paramagnetic component is integrated into either the cation or anion moiety, 

facilitating susceptibility to magnetic fields (Clark, Nacham, Purslow, Pierson, & Anderson, 2016; 

Clark et al., 2017a). Many classes of MILs are nonvolatile, nonflammable, and possess tunable 

physicochemical properties. The hydrophobic and liquid nature of MILs allows for distribution 

throughout a sample as liquid micro- or nanodispersions, which enables which enables capture of 

bacteria. Previous research suggests that MILs are a versatile and robust component of sample 

preparation, as they have been applied for the extraction of hormones, nucleic acids and viable 

bacterial cells (Clark et al., 2017b; Ding, Clark, Varona, Emaus, & Anderson, 2019; Merib, 
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Spudeit, Corazza, Carasek, & Anderson, 2018). MILs have been successfully implemented as 

novel extraction solvents in sample preparation for the preconcentration of viable, non-pathogenic 

Escherichia coli from fluid milk for culture- and quantitative polymerase chain reaction (qPCR)-

based detection (Clark et al., 2017a). More recently, MILs have been combined with recombinase 

polymerase amplification (RPA) for the rapid preconcentration and detection of Salmonella 

Typhimurium from fluid milk, almond milk and liquid egg samples (Hice et al., 2019). Despite 

their wide use as tools for sample preparation, the antimicrobial impact MILs impart onto the 

bacterial cell is not well characterized. 

 Standard culture-based approaches are still widely adopted in manufacturing environments 

and are used to detect and enumerate target bacteria (Jokerst et al., 2012). Culture-based methods 

result in delayed time-to-result as they rely on pre-enrichment, enrichment and selective plating, 

and are therefore not considered a “rapid” approach to detection of bacterial pathogens. Recovery 

of viable cells is often necessary as conventional processing applications, such as heating, freezing, 

irradiation and high-pressure, may result in cell death, non-injury or sub-lethal injury (Wu, 2008). 

Recovery of stressed or injured cells is often achieved using nutrient-rich, non-selective media, as 

the lack of selective agents facilitates cellular resuscitation (Wu, 2008). Enrichment steps hinder 

processing times resulting in delayed detection timelines. The ability of the MIL to rapidly 

preconcentrate and extract viable bacteria from food samples provides an alternative to 

conventional enrichment and recovery techniques. An understanding of the physiological impact 

the MIL maintains on the bacterial cell is essential, and has not previously been investigated. 

Capture and recovery of viable bacteria using rare earth-based MILs (Dy, Gd, Nd) has not been 

previously reported, as decreased cell viability have been observed (Clark et al., 2017a). While it 

has been observed that some MIL structures did not impede cell growth when incubated in non-
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selective Luria Bertani (LB) broth, parallel plating on non-selective and selective media as a means 

to screen for MIL-imparted cellular injury has not been investigated (Clark et al., 2017a).  

By plating MIL-treated cells in parallel on non-selective and selective media, potential 

antimicrobial effects of the MIL can be evaluated. Cellular injury caused by exposure to 

deleterious chemicals or heat is often characterized by physical damage to structural or functional 

components of the cell, including the outer membrane (Wu, 2008). Lack of a growth differential 

between MIL-treated cells plated on both non-selective and selective media would suggest that 

exposure to the MIL does not result in cellular injury. In this study we report the evaluation of the 

MIL-bacterial interactions, including any potential antimicrobial effects imparted onto a panel of 

Gram-negative bacteria consisting of nine Salmonella serotypes and eight E. coli O157:H7 strains.  

4.2 Materials and Methods 

4.2.1 Reagents and Magnetic Ionic Liquids: Chemical structures of the two MIL solvents 

examined in this study are shown in Fig. 1. Synthesis and characterization of the MILs was 

performed as previously described (Pierson et al., 2017). MIL solvents were purified by liquid-

liquid extraction with acetonitrile/hexane and dried in vacuo. Prior to all experiments, MILs were 

stored in a desiccator for at least 24 h. 

 

Figure 1. Chemical structures of MILs evaluated in this study. 
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4.2.2 Bacteria and Culture Conditions: The bacterial strains using in this study are listed in 

Table 1. All cultures were grown overnight in 10 mL volumes in Tryptic Soy Broth (TSB) (Becton, 

Dickinson and Company, Franklin Lakes, NJ, USA) at 37 °C. Organisms were enumerated using 

Tryptic Soy Agar (TSA), Bismuth Sulfite Agar (BSA) or MacConkey Agar with Sorbitol (SMAC) 

plates (BD). 

Table 1. Bacterial strains and species used in this study 

Strain                                                                                               Serotype                                                                 Sourcea 

E. coli N886-71                                                            O157:H7                                                               OHA 
E. coli N366-2-2                                                           O157:H7                                                               OHA 
E. coli N549-3-1                                                            O157:H7                                                                OHA 
E. coli N317-3-1                                                           O157:H7                                                               OHA 
E. coli N192-5-1                                                            O157:H7                                                                OHA 
E. coli N192-6-1                                                           O157:H7                                                               OHA 
E. coli N336-4-1                                                            O157:H7                                                                OHA 
E. coli N405-5-8                                                           O157:H7                                                               OHA 
Salmonella enterica subsp. salamae SA 4406                 SGSC                                                                                                               
Salmonella enterica subsp. arizonae SA 4407                                                                        SGSC 
Salmonella enterica subsp. diarizonae SA 4408                                                                                     SGSC 
Salmonella enterica subsp. houtenae SA 4409                                                                        SGSC 
Salmonella bongori SA 4410                                                                                                   SGSC 
Salmonella enterica subsp. indica SA 4411                                                                            SGSC 
Salmonella Minnesota SLH 157                                                                                                             SLH 
Salmonella Minnesota mR613                                                                                                                     SGSC 
Salmonella Typhimurium ATCC 14028                                                                                 ATCC 
a OHA, Oregon Health Authority, Public Health Division (Portland, OR, USA); SGSC, Salmonella 
Genetic Stock Centre (Calgary, Alberta, Canada); SLH, Wisconsin State Laboratory of Hygiene 
(Madison, WI, USA); ATCC, American Type Culture Collection (Manassas, VA, USA). 

4.2.3 Instrumentation: Overnight cultures were grown in 14 mL polystyrene round-bottom tubes 

(Corning Inc., Corning, NY, USA) at 37 °C in a Shel Lab Shaking Incubator (Sheldon 

Manufacturing, Inc., Cornelius, OR, USA). Agar plates were incubated in a Lab-Line Imperial III 

Incubator (Thermo Fisher Scientific, Waltham, MA, USA) at 37 °C.  
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4.2.4 MIL-Based Whole-Cell Extraction: A universal schematic for MIL-based cell extraction 

protocol is depicted in Fig. 2. A 1 mL volume of diluted cell suspension was added to a 4-mL 

screw cap glass vial. Fifteen microliters of either the ([P66614+][Dy(hfacac)4–]) or the 

([P66614+][Ni(hfacac)3–]) MIL was added and dispersed into microdroplets by vortex agitation for 

30 seconds (Clark et al., 2017a). The aqueous phase was decanted following dispersive extraction, 

and the MIL was subjected to a brief wash step using 1 mL of nuclease-free water (Integrated 

DNA Technologies, Coralville, IA, USA) to ensure adequate removal of residual cell suspension 

(Clark et al., 2017a). Recovery of viable cells from the MIL extraction phase was carried out using 

a “back-extraction” step accomplished through addition of 1 mL of modified LB broth containing, 

2X tryptone and 1X NaCl followed by a 120 second vortex step. After back-extraction, aliquots of 

the cell-enriched modified LB media were enumerated using a track dilution method on 100 x 100 

x 15 mm square TSA, BSA or SMAC plates (BD).  

4.2.5 Plating and Enumeration: Following back-extraction, aliquots of the cell-enriched 

modified LB media were serially diluted in 0.1% peptone water. A 10 µL aliquot of each dilution 

was applied to the appropriate lane on square TSA, BSA or SMAC plates (Siragusa, 1999). The 

plates were then tilted at approximately 80° for 15 min to allow the droplets to travel toward the 

opposite end of the plate. The plates were incubated for 24 h at 37 °C (TSA, SMAC) or for 48 h 

at 37 °C (BSA). Colonies were manually counted to determine the number of colony forming units 

(CFU) in each sample. The enrichment factor (EF) for MIL-based extraction was calculated using 

Equation 1, where CMIL represents the concentration of bacteria in suspension following extraction 

using the MIL and CS is the initial concentration of bacteria in the sample. 

E" =
$%&'
$(

 (1) 
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4.2.6 Exposure to 1-ethyl-3-methylimidazolium thiocyanate ([EMIM+][SCN-]) and 

([P66614+][Ni(hfacac)3–]) MIL Over Time: One milliliter of diluted Salmonella Typhimurium 

ATCC 14028 cell suspension was added to a 4-mL screw cap glass vial. A 5% (vol/vol) or 50% 

(vol/vol) aqueous solution of 1-ethyl-3-methylimidazolium thiocyanate ([EMIM+][SCN-]) 

(IoLiTec, Tuscaloosa, AL, USA) was added and dispersed into microdroplets by vortex agitation 

for 30 seconds (Mester, Wagner, & Rossmanith, 2010). Aliquots of the aqueous phase were 

enumerated at 0, 5, 10 and 15 min using TSA and BSA. Likewise, MIL-based whole-cell extraction 

was performed using the ([P66614+][Ni(hfacac)3–]) MIL, and cell-enriched modified LB media were 

enumerated at 0, 5, 10, 15 min using TSA and BSA. 

4.2.7 Comparison of Air-Displacement and Positive-Displacement Pipettes for MIL 

Handling: A 1 mL volume of diluted Salmonella Typhimurium ATCC 14028 cell suspension was 

added to a 4-mL screw cap glass vial. Fifteen microliters of the ([P66614+][Ni(hfacac)3–]) MIL was 

added using either a Pipetman Classic P20 air-displacement pipette (Gilson, Middleton, WI, USA), 

or a Microman E M25E positive-displacement pipette (Gilson) and dispersed into microdroplets 

by vortex agitation for 30 seconds. MIL-based extraction and enumeration was carried out as 

previously described.  

4.2.8 Exposure to ([P66614+][Dy(hfacac)4–]) MIL, DyCl3 and ([NH4+][Dy(hfacac)4-]): One 

milliliter of diluted Salmonella Typhimurium ATCC 14028 cell suspension was added to a 4-mL 

screw cap glass vial. Fifteen microliters of either the ([P66614+][Dy(hfacac)4–]) MIL or 2-10 µL of 

100 mM DyCl3 solution or 10 mg of the ammonium salt ([NH4+][Dy(hfacac)4-]) was added and 

dispersed by vortex agitation for 30 seconds. Aliquots of the ([P66614+][Dy(hfacac)4–]) MIL-

exposed cellular suspension were enumerated using square TSA or BSA plates (BD).  
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4.3 Results and Discussion 

4.3.1 Exposure Time-Course to the [EMIM+][SCN-] IL and the ([P66614+][Ni(hfacac)3–]) MIL: 

To begin our investigation into the physiological characterization of the Ni(II) MIL, we selected 

Salmonella Typhimurium ATCC 14028 as a model Gram-negative bacterium of interest. Our 

previously reported work demonstrated successful capture and recovery of viable Salmonella 

Typhimurium cells using Ni(II) and Co(II)-based MILs. Culture-based methods depend on sample 

preparation steps that preserve bacterial viability; therefore, potential deleterious cytotoxic effects 

imparted by MIL extractants must be considered. Based on our previously reported work that 

demonstrated successful integration of MIL-based capture with recombinase polymerase 

amplification (RPA), the Ni(II) MIL was selected for further analysis. To study the effect of the 

Ni(II) MIL exposure on the recovery of Salmonella Typhimurium, a 1 mL aliquot of TSB was 

inoculated with 1x105 CFU mL-1 of bacteria and spiked with 15 µL of the Ni(II) MIL. A general 

schematic for the MIL-based extraction and recovery is shown in Fig. 2. 

 

Figure 2. Schematic for the extraction, preconcentration and recovery of Salmonella from aqueous 
samples, followed by downstream analysis using microbiological culture detection methods. Panel 
adapted from Clark et al., 2017a.  

Following extraction, 10 µL aliquots of the back-extraction solution were enumerated at 0, 5, 10 

and 15 min using square TSA and BSA plates, as described previously. Average cell counts were 

compared to a standard that was not exposed to the Ni(II) MIL. As shown in Fig. 3, the Ni(II)-
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based MIL had little influence on the growth of Salmonella Typhimurium over time when 

compared to a standard that had not been exposed to the Ni(II) MIL. Differences in recovered cell 

counts may be due to differential extraction of Salmonella Typhimurium by the MIL. 

 

Figure 3. Recovery of Salmonella Typhimurium extracted with Ni(II) MIL as a function of 
time (min). Average colony forming unit (CFU) counts recovered from the aqueous Ni(II) MIL 
back-extraction phase over time (approximately 15 min). A suspension of Salmonella 
Typhimurium was prepared and captured with the Ni(II) MIL as described in the text, then back-
extracted using modified LB broth containing 2X tryptone and 1X NaCl. MIL-treated cells were 
compared to standard that had not been exposed to the Ni(II) MIL. 

Cell injury can be detected by plating MIL-treated cells in parallel on both non-selective 

and selective media and evaluating growth under each condition. Physiologically healthy (non-

injured) Gram-negative cells are able to tolerate exposure to selective agents, such as crystal violet 

or brilliant green, which are inherently toxic to Gram-positive cells. Gram-negative cells possess 

a protective outer membrane (OM), which serves to limit the passive diffusion of molecules into 

the cell. Gram-positive cells do not have an OM structure. Injury to Gram-negative cells caused 
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by exposure to deleterious chemicals is typically characterized by damage to the OM, causing the 

cell to become “leaky” and allowing ingress of these selective/toxic compounds, which results in 

reduced growth on selective agars (Wu, 2008). Enrichment factors were calculated as a function 

of time and are reported in Table 2. For TSA, the resulting EF value was 7.2±0.6 (n=4); for BSA, 

the EF values was 8.2±1.0 (n=4). 

Table 2. Enrichment factors for Salmonella Typhimurium over 15 min exposure to the Ni(II) MIL 

Time (min)                                          Enrichment Factor (TSA)                          Enrichment Factor (BSA) 

0                                                                 8                                                                7 
5                                                                 7                                                                8 
10                                                               6                                                                8 
15                                                               8                                                                9 

The effects of 5% or 50% (vol/vol) aqueous solutions of the [EMIM+][SCN-] IL on the 

viability of the cells was also evaluated. Average cell counts were compared to a standard not 

exposed to [EMIM+][SCN-]. [EMIM+][SCN-] has been previously investigated as a sample 

pretreatment reagent for the solubilization of protein-rich food matrices (Mester et al., 2010). The 

[EMIM+] cation potentially acts as a detergent, while the [SCN-] anion is chaotropic; the resulting 

outcome is an effective tool during matrix lysis (Mester et al., 2010). In our hands, when 

Salmonella Typhimurium was exposed to 50% (vol/vol) solutions of [EMIM+][SCN-], no recovery 

was observed on TSA or BSA after 5 min of exposure. Previously reported work demonstrates that 

[EMIM+][SCN-] is injurious to Salmonella Typhimurium during its use as an ionic liquid 

extractant, as observed by differential counts on non-selective and selective media (Mester et al., 

2010). 

4.3.2 Evaluation of Capture and Recovery of Wild-Type and Mutant Salmonella Minnesota 

Strains Using the ([P66614+][Ni(hfacac)3–]) MIL: To further evaluate the importance of the OM 

in protecting the cell from potentially deleterious effects conferred by the Ni(II) MIL, capture and 
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recovery of two physiologically distinct strains of Salmonella Minnesota was performed. The 

strains compared were Salmonella Minnesota SLH 157 (wild-type) and Salmonella Minnesota 

mR613 (outer membrane mutant). Salmonella Minnesota mR613 is considered a “deep rough” 

mutant, possessing a truncated OM core. Compared to cells with an intact OM, cells with a 

truncated OM are often dramatically more susceptible to damage from antimicrobial agents or in 

chemically harsh environments (Nikaido, 2003). To study the effect of the Ni(II) MIL exposure 

on the recovery of the wild-type and mutant strains of Salmonella Minnesota, a 1 mL aliquot of 

TSB was inoculated with 1x105 CFU mL-1 of bacteria and spiked with 15 µL of the Ni(II) MIL. 

MIL-based extraction was performed as previously described. Following extraction, 10 µL 

aliquots of the back-extraction solution were enumerated using square TSA and BSA plates. 

Average cell counts were compared to a standard that was not exposed to the Ni(II) MIL. 

Extraction and recovery of Salmonella Typhimurium was also assessed. Enrichment factors were 

calculated and are reported in Table 3.  

Table 3. Enrichment factors for Salmonella Typhimurium, Salmonella Minnesota SLH 157 (wild-
type) and Salmonella Minnesota mR613 (mutant)  

Strain Assessed                                   Enrichment Factor (TSA)                          Enrichment Factor (BSA) 

Salmonella Typhimurium                        10                                                               14 
Salmonella Minnesota SLH 157              17                                                               11 
Salmonella Minnesota mR613                  4                                                                 * 
* For both the standard and the MIL-treated cells, no growth was observed on BSA using the 
Salmonella Minnesota mR613 “deep rough” mutant strain. 

While the extraction efficiency using the Ni(II) MIL was greatly reduced for Salmonella 

Minnesota mR613, capture and recovery of viable cells was observed on TSA. Recovery of viable 

cells was not seen on BSA, as expected, due to the inherent susceptibility of this strain to selective 

agents stemming from its impaired OM barrier. Likewise, growth of the Salmonella Minnesota 

mR613 standard was observed on TSA but not on BSA.  
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Our ability to capture this mutant strain demonstrates two important things: (1) the capacity 

of the Ni(II) MIL to effectively capture and concentrate a strain of Salmonella Minnesota that 

displays a drastically different external surface and (2) the post-capture growth behavior of this 

physiologically sensitive strain suggests that the Ni(II) MIL capture process is not overtly 

antimicrobial. The lack of an observed toxic impact of the Ni(II) MIL on the “deep rough” mutant 

Salmonella Minnesota strain may result from a lack of inherent chemical toxicity of the Ni(II) 

MIL,  from low diffusivity of the hydrophobic MIL in aqueous media—or a combination of both 

potential phenomena. 

4.3.3 Capture and Recovery of Seven Representative DNA Subgroups of Salmonella and 

Eight Strains of E. coli O157:H7: Previous work has demonstrated successful capture of E. coli 

K12, Serratia marcescens and Salmonella Typhimurium using MILs (Clark et al., 2017a; Hice et 

al., 2019). In order to explore the versatility of MILs, evaluation of the broad applicability of MIL-

based capture and recovery of a panel of viable cells is requisite. To study the effect of the Ni(II) 

MIL exposure on the recovery of the seven representative DNA subgroups of Salmonella and eight 

strains of E. coli O157:H7, a 1 mL aliquot of TSB was inoculated with 1x106 CFU mL-1 of bacteria, 

and spiked with 15 µL of the Ni(II) MIL. MIL-based extraction was performed as previously 

described. Following extraction, 10 µL aliquots of the back-extraction solution were enumerated 

using square TSA and BSA plates (Salmonella) and TSA and SMAC plates (E. coli O157:H7). 

Average cell counts were compared to a standard that was not exposed to the Ni(II) MIL. 

Enrichment factors were calculated and are reported in Tables 4 and 5. 

Reasons for the observed interexperimental variability in calculated enrichment factors are 

not clear. However, our results demonstrate capture and recovery of all seven Salmonella 

subgroups and all eight strains of E. coli O157:H7, with comparable recovery on non-selective and 
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selective media within experiments. For each strain assessed, calculated enrichment factors 

between media types were nearly identical (Tables 4, 5), indicating that the Ni(II) MIL did not 

exhibit toxicity towards the fifteen strains assessed. MIL-based extraction and recovery of 

Salmonella strains representative of the two species of Salmonella that comprise the genus (S. 

enterica and S. bongori), and of the seven DNA subgroups within the genus Salmonella, 

demonstrates the robust applicability and breadth of MIL-based capture.  

Table 4. Enrichment factors for seven representative DNA subgroups of Salmonella  

Strain Assessed                                               Enrichment Factor (TSA)              Enrichment Factor (BSA) 

Salmonella Typhimurium                                     8                                                     6 
Salmonella enterica subsp. salamae                   12                                                    9 
Salmonella enterica subsp. arizonae                    3                                                     2 
Salmonella enterica subsp. diarizonae        7                                                    11 
Salmonella enterica subsp. houtenae                    8                                                     8 
Salmonella bongori                                             4                                                     4 
Salmonella enterica subsp. indica                    3                                                     4 

Table 5. Enrichment factors for eight strains of E. coli O157:H7  

Strain Assessed                                               Enrichment Factor (TSA)            Enrichment Factor (SMAC) 

E. coli O157:H7 N886-71                                    4                                                   1 
E. coli O157:H7 N366-2-2                                   4                                                   1 
E. coli O157:H7 N549-3-1                                   8                                                   3 
E. coli O157:H7 N317-3-1                                   4                                                   1 
E. coli O157:H7 N192-5-1                                   7                                                   1 
E. coli O157:H7 N192-6-1                                   9                                                   4 
E. coli O157:H7 N336-4-1                                   3                                                   2 
E. coli O157:H7 N405-5-8                                   2                                                   1 

E. coli, S. marcescens and Salmonella belong to a broader family of physiologically-similar Gram-

negative bacteria, the Enterobacteriaceae. This family contains several other pathogenic bacteria 

of interest in foods, including Cronobacter, Erwinia, Klebsiella, Shigella and Yersinia. This study 

provides the foundation for further investigation into the capture and recovery of other notable 
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foodborne pathogens and establishes MILs as a viable platform for rapid preconcentration and 

extraction methodology.  

4.3.4 Comparison of the Initial Wash and the Full MIL Extraction on the Recovery of 

Salmonella Typhimurium: Although all of the strains assessed were capable of being enriched 

by the MIL, some species were physically enriched to greater extents than others with extraction. 

In order to further examine the cause for this finding, the number of cells present in the wash 

solution was investigated. The washing step is performed after subjecting the cells to the MIL 

enrichment process in order to remove any loosely adsorbed bacteria prior to back-extraction. It is 

hypothesized that the cells with lower enrichment factors are bound with lower affinity to the MIL 

and, therefore, a greater number would be lost to the wash solution than those with higher 

enrichment factors. To test this, five different Salmonella strains exhibiting varying degrees of 

enrichment were subjected to the aforementioned analysis. Results demonstrate that the range of 

amount lost during the wash step for the bacteria tested ranged from 47-79%. These data indicate 

that the wash step is successful at removing superficially adsorbed bacteria from the MIL 

extraction phase. The difference in the amount lost can also be compared to the enrichment factors 

to aid in identifying which cells may have a higher affinity for the MIL phase (Table 6). 

Table 6. Percent loss of cells in the wash solution  

Strain Assessed                                                                                                        Percent-Loss* 

Salmonella Typhimurium                                                                                      53±3 
Salmonella enterica subsp. arizonae                                                                     79±1 
Salmonella enterica subsp. diarizonae                                                         47±7 
Salmonella Minnesota SLH 157                                                                    59±3 
Salmonella Minnesota mR613                                                                    69±5 
* Percent-loss was calculated by dividing the counts obtained from the wash solution by the sum 
of the counts of the wash and back-extraction solution, multiplied by 100. 
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Enrichment factors obtained for Salmonella enterica subsp. arizonae were some of the 

lowest (EF=3) of the Salmonella strains tested. When the percent-loss is calculated for this 

particular strain, it is found that 79% of the bacteria present in the MIL during the extraction step 

are lost during the wash. This may indicate that the bacteria have a weaker affinity for the MIL 

compared to other strains tested. In comparison, Salmonella Typhimurium yielded enrichment 

factors twice as high as arizonae, and had a lower percent-loss (53%) during the wash step. This 

experiment provides evidence that differences in EF values for the various bacteria tested could be 

due to differential affinity for the MIL extraction phase. If this is true, bacteria with lower affinities 

for the MIL may be weakly bound, and are therefore easily removed by the washing step compared 

to the strains with higher observed enrichment factors.   

4.3.5 Investigation of the [P66614+][Dy(hfacac)4–] MIL: Incorporation of a rare-earth metal into 

the MIL structure is of significant interest as these metals possess greater magnetic moments. In 

principle, this allows for easier manipulation with an external magnet compared to transition 

metal-based MILs. However, when the [P66614+][Dy(hfacac)4–] MIL was previously explored for 

the capture of bacteria, recovery of viable cells was not observed (Clark et al., 2017a). In order to 

understand these results and to determine if they might be related to antimicrobial activity exerted 

by this MIL, bacterial suspensions of Salmonella Typhimurium were exposed to various structural 

components of the MIL. 

Initially, the addition of 15 µL of [P66614+][Dy(hfacac)4–] MIL to a cell suspension was 

evaluated. However, after 30 sec of vortex, visual examination of the suspension solution revealed 

significant flocculation. Upon plating on selective and non-selective media, no observable growth 

was observed on either type of media. Due to the visual appearance of the suspension after MIL 

exposure and lack of growth on plates, it is possible that the MIL is capable of lysing the bacteria.  



www.manaraa.com

106 
 

To gain further insight into this phenomenon, the effect of dysprosium was evaluated by 

subjecting the cells to 0.1 mM and 1.0 mM solutions of DyCl3. The cells were exposed to the metal 

solutions for 30 seconds and subsequently plated on selective and non-selective media. Results 

shown in Fig. 4 demonstrate that growth can be observed on both types of plates. However, 

significantly lower counts are observed on BSA than TSA, particularly at the higher DyCl3 

concentration. This suggests that the coordinated metal may be partially responsible for the 

deleterious effects of the MIL.  

 

Figure 4. Recovery of Salmonella Typhimurium following 30 sec exposure to 0.1 mM and 1.0 
mM DyCl3. Viable cell counts recovered on non-selective TSA (left) and selective BSA (right) 
from the DyCl3-exposed cells following initial 30 sec exposure.  

Although the metal showed some cytotoxicity, it is not completely responsible for the 

MIL’s effect on the cells, as growth was still observed. Since both the Ni(II) and the Dy(III) MILs 

contain identical cations ([P6,6,6,14+]), the effect of the anion structure was evaluated. The anion of 

the Dy(III) MIL contains one additional hexafluoroacetylacetonate ligand than the Ni(II) MIL, 
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making the coordination geometry of the two complexes different. To test the effects of the anion 

structure, cells were subjected to 10 mg of the ammonium salt ([NH4+][Dyhfacac-]). After 30 sec 

vortex, similar flocculation was observed as when the cells were exposed to the Dy(III) MIL. After 

plating and 24 hr incubation, no growth was seen on either BSA or TSA. These results provide 

strong evidence that the anion structure is largely responsible for the antimicrobial effects of the 

MIL. Ongoing work is focused on the design and synthesis of a non-toxic Dy(III)-based MIL 

whose strong paramagnetism can be exploited.  

4.3.6 Assessment of Positive and Air Displacement Pipettes: The Ni(II) MIL used in this study 

possesses one of the lowest viscosities (927.9 centipoise (cp)) of MILs previously reported. While 

it is less viscous than many previously synthesized MILs, its viscosity is only slightly lower than 

glycerol (950 cp) at room temperature. This makes pipetting with traditional air displacement (AD) 

pipettes a challenge, as the MIL must be drawn up very slowly in order to prevent any aspiration 

of air. Furthermore, the high viscosity prevents all of the MIL from being completely dispensed as 

some remains adhered to the walls of the pipette tip. These drawbacks prevent the MILs from 

being utilized by end-users with minimal training and can lead to significant amounts of unused 

MIL from the adherence to the pipette tip.  

In order to circumvent these challenges associated with the manipulation of the MIL, the 

use of a positive displacement pipette for dispensing the MIL was explored. Positive displacement 

(PD) pipettes use piston-driven displacement as the mechanism for fluid delivery. This type of 

pipette is popular for applications with highly viscous liquids, as the mechanism allows for faster 

draw up, as well as ensuring virtually no liquid is left on the inside of the tip after dispensing. To 

compare the performance of both pipettes, in terms of quantity and reproducibility of MIL 

delivery, 15 µL of MIL originating from each pipette was weighed (n=3). From the results shown 
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in Fig. 5, it is obvious that the PD pipette is able to deliver a significantly greater mass of MIL 

(17.1±0.6 mg) compared to the AD pipette (11.3±0.4 mg) with similar reproducibility. This 

difference is most likely attributed to the MIL remaining on the walls of the AD tip as no MIL was 

visually observed to remain within the PD tip following pipetting.  

 

Figure 5. Evaluation of Ni(II) MIL delivery using air displacement (AD) and positive 
displacement (PD) pipettes. Average mass in mg of Ni(II) MIL dispensed using the AD and PD 
pipettes. The PD pipette is able to deliver a significantly greater mass of Ni(II) MIL (17.1±0.6 
mg) compared to the AD pipette (11.3±0.4 mg). 

To test whether or not this difference resulted in a noticeable increase in extraction 

performance, extractions were performed as previously described using each pipette to dispense 

15 µL of MIL. The results demonstrate no discernable difference in the enrichment factors 

obtained from using either pipette. While no difference was observed, the PD offers the following 

advantages over AD: (1) dispensing the MIL is much faster and easier with PD; using the AD 

requires slower draw-up and dispensing as it relies on air to displace a viscous liquid, (2) although 

0

2

4

6

8

10

12

14

16

18

20

Air Displacement Positive Displacement

M
as

s 
D

is
pe

ns
ed

 (m
g)



www.manaraa.com

109 
 

the extraction performance did not appear to differ between the two pipettes, there is a significant 

difference in the amount of MIL dispensed. Using a PD can be economically advantageous as 

smaller volumes can be used to dispense similar quantities as AD without any loss of MIL to the 

walls of the tip. 

3.4 Conclusions 

In summary, the extraction performance and physiological effects of the 

[P66614+][Ni(hfacac)3-] MIL on nine Salmonella serotypes and eight E. coli O157:H7 strains was 

explored. Potential damage to the cells was assessed by comparing cell-counts on non-selective 

(TSA) and selective (BSA, SMAC) media, as damaged cells are expected to show impaired growth 

on selective media. Virtually no difference was observed in the counts between media types for all 

Salmonella and E. coli O157:H7 strains tested, indicating no detectable antimicrobial effects were 

imparted by the Ni(II) MIL. Furthermore, physical enrichment was achieved for all of the strains 

tested (EF from 1-12), demonstrating the broader applicability of MIL-based capture of bacterial 

pathogens. 

 We determine experimentally a possible reason for the difference in the enrichment factors 

for the various cell strains by analyzing the back-extraction solution. The strains that resulted in 

lower enrichment factors were found to lose a higher number of cells during the washing process, 

indicating a weaker interaction between the cells and the MIL. The cytotoxic effects of the 

[P66614+][Dy(hfacac)4-] MIL were also investigated. It was found that the anion played a large role 

in the cytotoxic behavior of the MIL. Ongoing work is focused on further understanding the role 

of the Dy(III) anion in order to better design a Dy(III)-based MIL with reduced cytotoxic effects.   
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CHAPTER FIVE 

GENERAL CONCLUSIONS 

 

The second chapter of this dissertation describes an approach to paper-based enzymatic 

colorimetric assays for the identification of metabolic state in Salmonella Typhimurium and E. 

coli from environmental samples. Non-specific bacterial enzymes, including oxidoreductases and 

alkaline phosphatases, are present at different levels depending on metabolic state of the cell. 

Respectively, these enzymes act by reducing tetrazolium salts to purple formazans, or cleaving 

para-nitrophenyl-phosphate salts to yellow para-nitrophenol. The developed INT-PMS 

(metabolically active) and INT-PNPP (metabolically inactive) assays resulted in visible color 

change on paper within 60 min. Capture using Salmonella or E. coli-specific bacteriophage (P22 

and T4) allows for specific detection. Our approach to detection of bacterial pathogens using non-

specific bacterial enzymes is inexpensive, portable and rapid (30 min), allowing a semi-

quantitative determination of the concentration of bacteria at each metabolic state. The assays 

facilitate the rapid determination of the metabolic state of bacteria, which is important in 

preventing deleterious environmental and industrial effects induced by rapid bacterial growth.   

The third chapter of this dissertation describes the combined use of magnetic ionic liquids 

(MILs) and recombinase polymerase amplification (RPA) for the detection of Salmonella 

Typhimurium in aqueous food samples. Ni(II) and Co(II)-based MILs were investigated for the 

extraction and recovery of viable Salmonella, which had not been previously reported. Use of the 

Ni(II) and Co(II)-MILs resulted in rapid (5 min) preconcentration of cells approximately 12 times 

the initial concentration. Following extraction, a 20 minute isothermal RPA assay was employed, 

and results were visualized using gel electrophoresis or nucleic acid lateral flow immunoassay 



www.manaraa.com

114 
 

(NALFIA). Sodium acetate heat packs were used as a chemical heat source during amplification. 

Our combined MIL-RPA-NALFIA method demonstrates a low-cost, portable and rapid (30 min) 

approach to bacterial pathogen detection. The simple, streamlined approach to single-tube 

detection facilitates ease of operation and interpretation for end-users. Presently, this work is 

intended to benefit food processors, enabling rapid, in-plant testing of foods and environments. 

The fourth chapter of this dissertation describes the investigation into the physical 

properties of the Ni(II) and Dy(III)-based MILs, including an evaluation of potential antimicrobial 

effects. A multi-strain panel of Salmonella and E. coli O157:H7 were surveyed, including nine 

serotypes of Salmonella and eight strains of E. coli O157:H7. Non-selective (TSA) and selective 

(BSA, SMAC) media was employed to identify any potential deleterious effects of the MILs, 

including cell damage, over time (15 min). By plating MIL-treated cells on non-selective and 

selective media in parallel, evaluation of the potentially antimicrobial effects of the MIL is 

achieved. Cellular injury is frequently characterized by damage to the outer membrane. MIL-based 

exposure was compared to 1-ethyl-3-methylimidazolium thiocyanate ([EMIM+]SCN-), which has 

been reported to induce cellular injury. While the Ni(II) MIL did not impart any observable 

antimicrobial effects onto the cell, exposure to the Dy(III) MIL did not result in recovery of viable 

cells on both non-selective and selective media. Investigation into the individual components of 

the Dy(III) MIL suggested that the ammonium salt ([NH4+][Dyhfacac-]) was responsible for the 

cytotoxic effects observed.  

Throughout this dissertation the described approaches to bacterial pathogen detection 

encompassed four key advantages, including: 1) time-to-result, 2) low-cost, 3) portability and 4) 

ease of operation/interpretation. Our described approaches to rapid detection may enable simple 

and low-cost sampling of bacterial pathogens, which can be used for agricultural testing efforts 
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and to improve industrial efficiency in food processing environments. MILs provide a unique 

approach to the purification and preconcentration of bacterial pathogens, and are a versatile, robust 

sample preparation technique with a variety of applications, including a particle-free approach to 

capture of sequence-specific DNA. Future work will emphasize extending MIL-based capture and 

recovery of notable foodborne pathogens, including members of the Enterobacteriaceae 

(Cronobacter, Erwinia, Klebsiella, Shigella, Yersinia) and other important foodborne pathogens, 

such as L. monocytogenes. While our research suggests that weak electrostatic interactions drives 

MIL-based capture, use of fluorescently-labeled cells may facilitate observation of the interaction 

that exists between the MIL and the cells. Labeling with Syto-9, followed by washing and dispersal 

in a model medium, may allow observation of MIL-bound bacteria under a fluorescent microscope, 

with the option for  magnetic focusing of the cell-charged MIL to improve visualization. A deeper 

understanding of the MIL capture process will ultimately provide insights into design of new MIL 

structures for improving the purification and enrichment of pathogenic bacteria. 
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APPENDIX A 

SUPPORTING INFORMATION ACCOMPANYING CHAPTER 2 

 

Table S1.- Chemical composition of INT/PMS/L-malic Assay Solutions. Different combination 
of INT (0 to 2.5 mM), PMS (0 to 1 mM) and L-malic (0 to 10 mM) were dissolved in PBS and 
tested with 104 CFU of E. coli LLV per 38.5 mm2. Color intensity is reported in the green channel 
as an average of 5 samples.  

INT 
(mM) 

PMS 
(mM) 

L-malic 
(mM) 

color 
intensity 

two standard 
errors 

0.5 0.00 0.0 0.4922 0.0129 
0.5 0.00 2.5 0.4723 0.0105 
0.5 0.00 5.0 0.5311 0.0247 
0.5 0.00 10.0 0.5152 0.0181 
0.5 0.25 0.0 0.6807 0.0169 
0.5 0.25 2.5 0.5924 0.0688 
0.5 0.25 5.0 0.5499 0.0382 
0.5 0.25 10.0 0.5560 0.0139 
0.5 0.50 0.0 0.5609 0.0131 
0.5 0.50 2.5 0.5774 0.0231 
0.5 0.50 5.0 0.5621 0.0172 
0.5 0.50 10.0 0.5521 0.0171 
0.5 0.75 0.0 0.4893 0.0050 
0.5 0.75 2.5 0.4929 0.0136 
0.5 0.75 5.0 0.4649 0.0047 
0.5 0.75 10.0 0.4831 0.0085 
0.5 1.00 0.0 0.5401 0.0301 
0.5 1.00 2.5 0.5883 0.0113 
0.5 1.00 5.0 0.5174 0.0185 
0.5 1.00 10.0 0.5568 0.0190 
1.0 0.00 0.0 0.4875 0.0176 
1.0 0.00 2.5 0.5069 0.0419 
1.0 0.00 5.0 0.5427 0.0314 
1.0 0.00 10.0 0.5761 0.0202 
1.0 0.25 0.0 0.5286 0.0156 
1.0 0.25 2.5 0.5400 0.0141 
1.0 0.25 5.0 0.5481 0.0224 
1.0 0.25 10.0 0.5729 0.0161 
1.0 0.50 0.0 0.5127 0.0200 
1.0 0.50 2.5 0.5796 0.0316 
1.0 0.50 5.0 0.5469 0.0157 
1.0 0.50 10.0 0.5329 0.0246 
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INT 
(mM) 

PMS 
(mM) 

L-malic 
(mM) 

color 
intensity 

two standard 
errors 

1.0 0.75 0.0 0.5544 0.0345 
1.0 0.75 2.5 0.5515 0.0158 
1.0 0.75 5.0 0.4917 0.0192 
1.0 0.75 10.0 0.5301 0.0217 
1.0 1.00 0.0 0.5488 0.0168 
1.0 1.00 2.5 0.5122 0.0088 
1.0 1.00 5.0 0.5154 0.0263 
1.0 1.00 10.0 0.5403 0.0294 
1.5 0.00 0.0 0.5830 0.0291 
1.5 0.00 2.5 0.5366 0.0077 
1.5 0.00 5.0 0.5616 0.0088 
1.5 0.00 10.0 0.5446 0.0129 
1.5 0.25 0.0 0.5171 0.0134 
1.5 0.25 2.5 0.5300 0.0163 
1.5 0.25 5.0 0.5387 0.0111 
1.5 0.25 10.0 0.5507 0.0165 
1.5 0.50 0.0 0.6186 0.0506 
1.5 0.50 2.5 0.5506 0.0207 
1.5 0.50 5.0 0.5349 0.0267 
1.5 0.50 10.0 0.4865 0.0200 
1.5 0.75 0.0 0.5207 0.0168 
1.5 0.75 2.5 0.5327 0.0288 
1.5 0.75 5.0 0.5076 0.0164 
1.5 0.75 10.0 0.5041 0.0125 
1.5 1.00 0.0 0.5120 0.0191 
1.5 1.00 2.5 0.5075 0.0270 
1.5 1.00 5.0 0.5196 0.0157 
1.5 1.00 10.0 0.5198 0.0145 
2.0 0.00 0.0 0.5454 0.0268 
2.0 0.00 2.5 0.5363 0.0196 
2.0 0.00 5.0 0.5639 0.0145 
2.0 0.00 10.0 0.5152 0.0129 
2.0 0.25 0.0 0.5361 0.0366 
2.0 0.25 2.5 0.5425 0.0115 
2.0 0.25 5.0 0.5610 0.0404 
2.0 0.25 10.0 0.5294 0.0232 
2.0 0.50 0.0 0.6002 0.0128 
2.0 0.50 2.5 0.5673 0.0042 
2.0 0.50 5.0 0.5701 0.0185 
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INT 
(mM) 

PMS 
(mM) 

L-malic 
(mM) 

color 
intensity 

two standard 
errors 

2.0 0.50 10.0 0.5526 0.0221 
2.0 0.75 0.0 0.5167 0.0265 
2.0 0.75 2.5 0.4975 0.0233 
2.0 0.75 5.0 0.5351 0.0153 
2.0 0.75 10.0 0.5100 0.0260 
2.0 1.00 0.0 0.6007 0.0076 
2.0 1.00 2.5 0.4953 0.0186 
2.0 1.00 5.0 0.5042 0.0114 
2.0 1.00 10.0 0.4884 0.0216 
2.5 0.00 0.0 0.4870 0.0153 
2.5 0.00 2.5 0.4826 0.0330 
2.5 0.00 5.0 0.5488 0.0118 
2.5 0.00 10.0 0.4695 0.0115 
2.5 0.25 0.0 0.5121 0.0146 
2.5 0.25 2.5 0.4977 0.0064 
2.5 0.25 5.0 0.4910 0.0185 
2.5 0.25 10.0 0.4540 0.0045 
2.5 0.50 0.0 0.5263 0.0190 
2.5 0.50 2.5 0.5508 0.0171 
2.5 0.50 5.0 0.4678 0.0198 
2.5 0.50 10.0 0.5196 0.0107 
2.5 0.75 0.0 0.5218 0.0250 
2.5 0.75 2.5 0.5168 0.0185 
2.5 0.75 5.0 0.5020 0.0116 
2.5 0.75 10.0 0.5217 0.0100 
2.5 1.00 0.0 0.7746 0.0447 
2.5 1.00 2.5 0.5918 0.1119 
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Table S2 Chemical composition of INT/PNPP Assay Solutions. Different combination of INT (0 
to 3 mM) and PNPP (1 to 45 mM) were dissolved in TRIS 0.5 M and tested with 104 CFU of E. 
coli per 38.5 mm2. Color intensity was measured in the blue channel. The reported values are an 
average of 5 samples.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

INT 
(mM) 

PNPP 
(mM) 

color 
intensity two standard errors 

0.0 1 0.4427 0.0033 
0.0 5 0.4424 0.0051 
0.0 10 0.4372 0.0040 
0.0 15 0.4311 0.0025 
0.0 20 0.4594 0.0044 
0.0 30 0.4594 0.0044 
0.0 45 0.4617 0.0068 
0.5 1 0.4838 0.0089 
0.5 5 0.4838 0.0067 
0.5 10 0.4765 0.0245 
0.5 15 0.4571 0.0049 
0.5 20 0.4661 0.0070 
0.5 30 0.4661 0.0070 
0.5 45 0.4722 0.0083 
1.5 1 0.4633 0.0043 
1.5 5 0.4712 0.0073 
1.5 10 0.4787 0.0075 
1.5 15 0.4659 0.0024 
1.5 20 0.4849 0.0078 
1.5 30 0.4849 0.0078 
1.5 45 0.4687 0.0039 
3.0 1 0.4613 0.0037 
3.0 5 0.5097 0.0156 
3.0 10 0.4982 0.0070 
3.0 15 0.4799 0.0066 
3.0 20 0.5052 0.0131 
3.0 30 0.5052 0.0131 
3.0 45 0.5109 0.0094 
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A) 

 
B) 

 
Figure S1.- Color analysis performed in samples with dormant E. coli and INT/PNPP assay. 
The color image was analyzed by ImageJTM as well as each color channel from the same image. 
(Panel a) Blue and green channel demonstrated the highest color intensity values however blue 
channel had lowest background on samples without bacteria. Blue channel was chosen for analyses 
since it captured both enzymatic activities (oxidoreductases and alkaline phosphatases) from the 
same sample. (Panel b) Sample of visual images utilized for analysis. 
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APPENDIX B 

SUPPORTING INFORMATION ACCOMPANYING CHAPTER 3 

 

 
Figure S1. Comparison of DLH and invA primers for detection of MIL-extracted Salmonella 
Typhimurium using gel electrophoresis. Suspensions of S. Typhimurium in aqueous media at 
three different levels (106, 104 and 102 CFU mL-1) were extracted using the Ni(II) MIL, subjected 
to a 20 min RPA using the DLH and invA primers and examined on an agarose gel stained with 
SYBR Safe DNA Gel Stain. (Panel a) Bands for DLH primers consistently showed higher 
fluorescence (greater product yield) across all cell concentrations used. (Panel b) Evaluation of 
DLH RPA with MIL-extracted E. coli supports in silico results demonstrating the specificity of the 
DLH primers for Salmonella spp. 
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